Announcements Sep 27

- Masks \rightsquigarrow Music?
- Mid -semester survey in Canvas \rightarrow Quizzes
- *•* WeBWorK 2.5 & 2.6 due Tuesday nite
- *•* Midterm 2 Oct 20 8–9:15p
- *•* No quiz Friday(?!)
- Use Piazza for general questions
- Office hrs: Tue 4-5 Teams $+$ Thu 1-2 Skiles courtyard/Teams $+$ Pop-ups?
- **Many TA office hours listed on Canvas**
- *•* Section M web site: Google "Dan Margalit math", click on 1553
	- \blacktriangleright future blank slides, past lecture slides, advice
- *•* Old exams: Google "Dan Margalit math", click on Teaching
- *•* Tutoring: <http://tutoring.gatech.edu/tutoring>
- *•* PLUS sessions: <http://tutoring.gatech.edu/plus-sessions>
- *•* Math Lab: <http://tutoring.gatech.edu/drop-tutoring-help-desks>

 x_1 in Nul (A

 X_2 is soon to $A_{x=b}$ $A_{x=b}$ $A_{x=b}$ $A_{x=b}$

- Counseling center: <https://counseling.gatech.edu>
- *•* You can do it!

Find a span for $\Gamma(A)$ $A = \begin{pmatrix} 1 & 0 \\ 2 & A \end{pmatrix}$ TY Ty th 10

then $A(nx_1+x_2)^5$

Section 2.7

Bases

 \blacktriangle

(イロ) (個) (言) (言) (言) のへぐ

Bases

 $V =$ subspace of \mathbb{R}^n (possibly $V = \mathbb{R}^n$) plane thru $V = V$

A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$
V = \text{Span}\{v_1, \ldots, v_k\}
$$

2. *v*1*,...,v^k* are linearly independent

Equivalently, a basis is a *minimal spanning set*, that is, a spanning set where if you remove any one of the vectors you no longer have a spanning set.

Dimension

 $V =$ subspace of \mathbb{R}^n

 $\dim(V)$ = dimension of $V = k$ = the number of vectors in the basis

(What is the problem with this definition of dimension?) How do we known for a fixed V all bases have same number of vectors It turns ωt : it's ak. All bases have same dim

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

Bases for R*ⁿ*

Let us consider the special case where V is equal to all of \mathbb{R}^n .

What are all bases for $V = \mathbb{R}^n$? Or, if we have a set of vectors $\{v_1, \ldots, v_k\}$, how do we check if they form a basis for \mathbb{R}^n ? First, we make them the columns of a matrix....

- For the vectors to be linearly independent we need a pivot in every column.
- For the vectors to span \mathbb{R}^n we need a pivot in every row.

Conclusion: $k = n$ and the matrix has n pivots.

The standard basis for \mathbb{R}^n

We have the standard basis vectors for \mathbb{R}^n :

$$
e_1 = (1, 0, 0, \dots, 0)
$$

$$
e_2 = (0, 1, 0, \dots, 0)
$$

Who cares about bases?

A basis $\{v_1, \ldots, v_k\}$ for a subspace V of \mathbb{R}^n is useful because:

งข

Every vector v in V can be written in exactly one way:

$$
v = c_1v_1 + \cdots + c_kv_k
$$

Span

So a basis gives coordinates for *V*, like latitude and longitude. See Section 2.8.

Solve $x \cdot v_1 + y \cdot v_2 = b$

lin ind

Find bases for $\text{Nul}(A)$ and

 $C_o(A)$ $\begin{array}{c}\n\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\end{pmatrix} \\
\rightarrow \begin{pmatrix}\n1 & 1 \\
0 & 0\n\$ $\left\{\frac{1}{x}\right\}_{\text{aive}}$

and Col(A)
\n
$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}
$$
\n
\nThus
\n
$$
\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}
$$
\n
$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}
$$

Find bases for $\text{Nul}(A)$ and $\text{Col}(A)$

$$
A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)
$$

OUPSIRS!

Kロト K部下 Kミト KミトーミーのQC

Find bases for $\text{Nul}(A)$ and $\text{Col}(A)$

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \boxed{1} & 0 & -1 \\ 0 & \boxed{1} & 2 \\ 0 & 0 & 0 \end{pmatrix}
$$

\n
$$
\sqrt{\frac{1}{2} + \frac{2}{1}} \times \frac{1}{2}
$$

\n
$$
\sqrt{\frac{1}{2} + \frac{2}{1}} \times \frac{1}{2}
$$

\n
$$
\sqrt{\frac{1}{2} + \frac{2}{1}} \times \frac{1}{2}
$$

\n
$$
\sqrt{\frac{1}{2} + \frac{1}{1}} \times \frac{1}{2}
$$

\n
$$
\sqrt{\frac{1}{2} + \frac
$$

Kロト K個 K K ミト K ミト ニミー の Q Q

In general:

- our usual parametric solution for $Ax = 0$ gives a basis for $\text{Nul}(A)$
- *•* the pivot columns of *A* form a basis for Col(*A*)

Warning! Not the pivot columns of the reduced matrix.

What should you do if you are asked to find a basis for $\textsf{Span}\{v_1,\ldots,v_k\}$?

Find a basic
For span
$$
\{\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 4 \\ 7 \end{pmatrix}, \dots
$$
 Make a matrix are the
other sides of the plane.

 Λ

Basis theorem

Basis Theorem

If V is a *k*-dimensional subspace of \mathbb{R}^n , then

- *•* any *k* linearly independent vectors of *V* form a basis for *V*
- *•* any *k* vectors that span *V* form a basis for *V*

In other words if a set has two of these three properties, it is a basis:

We are skipping Section 2.8 this semester. But remember: the whole point of a basis is that it gives coordinates (like latitude and longitude) for a subspace. Every point has a unique address.

Typical exam questions

- Find a basis for the yz -plane in \mathbb{R}^3
- Find a basis for \mathbb{R}^3 where no vector has a zero
- *•* How many vectors are there in a basis for a line in *^R*⁷?
- True/false: every basis for a plane in \mathbb{R}^3 has exactly two vectors.
- True/false: if two vectors lie in a plane through the origin in \mathbb{R}^3 and they are not collinear then they form a basis for the plane.
- *•* True/false: The dimension of the null space of *A* is the number of pivots of *A*.
- *•* True/false: If *b* lies in the column space of *A*, and the columns of *A* are linearly independent, then $Ax = b$ has infinitely many solutions.
- *•* True/false: Any three vectors that span *^R*³ must be linearly independent.

Section 2.9

The rank theorem

Rank Theorem

On the left are solutions to $Ax = 0$, on the right is $Col(A)$:

Rank Theorem

 $rank(A) = dim Col(A) = #$ pivot columns nullity(A) = dim Nul(A) = $\#$ nonpivot columns

Rank Theorem. $\text{rank}(A) + \text{nullity}(A) = \text{\#cols}(A)$

This ties together everything in the whole chapter: rank *A* describes the *b*'s so that $Ax = b$ is consistent and the nullity describes the solutions to $Ax = 0$. So more flexibility with *b* means less flexibility with *x*, and vice versa.

4 ロ ト 4 伊 ト 4 ヨ ト 4 ヨ ト - ヨ - タ Q Q Q

Example.
$$
A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}
$$

About names

Again, why did we need all these vocabulary words? One answer is that the rank theorem would be harder to understand if it was:

The size of a minimal spanning set for the set of solutions to $Ax = 0$ plus the size of a minimal spanning set for the set of *b* so that $Ax = b$ has a solution is equal to the number of columns of *A*.

Compare to: $\text{rank}(A) + \text{nullity}(A) = n$

"A common concept in history is that knowing the name of something or someone gives one power over that thing or person." –Loren Graham http://philoctetes.org/news/the_power_of_names_religion_mathematics

Typical exam questions

- Suppose that A is a 5×7 matrix, and that the column space of A is a line in \mathbb{R}^5 . Describe the set of solutions to $Ax = 0$.
- Suppose that *A* is a 5×7 matrix, and that the column space of *A* is \mathbb{R}^5 . Describe the set of solutions to $Ax = 0$.
- Suppose that A is a 5×7 matrix, and that the null space is a plane. Is *Ax* = *b* consistent, where $b = (1, 2, 3, 4, 5)$?
- True/false. There is a 3×2 matrix so that the column space and the null space are both lines.
- True/false. There is a 2×3 matrix so that the column space and the null space are both lines.
- True/false. Suppose that A is a 6×2 matrix and that the column space of *A* is 2-dimensional. Is it possible for (1*,* 0) and (1*,* 1) to be solutions to $Ax = b$ for some *b* in \mathbb{R}^6 ?