1.3 Parametric Form

Outline of Section 1.3

• Find the parametric form for the solutions to a system of linear equations.

(ロ)、(型)、(E)、(E)、 E) の(()

• Describe the geometric picture of the set of solutions.

Free Variables

We know how to understand the solution to a system of linear equations when every column to the left of the vertical line has a pivot. For instance:

$$\left(\begin{array}{cc|c}1 & 0 & 5\\0 & 1 & 2\end{array}\right)$$

If the variables are x and y what are the solutions?

Free Variables

How do we solve a system of linear equations if the row reduced matrix has a column without a pivot? For instance:

$$\left(\begin{array}{rrrr|r} 1 & 0 & 5 & 0 \\ 0 & 1 & 2 & 1 \end{array}\right)$$

represents two equations:

 $\begin{array}{rcl}
x_1 & +5x_3 = 0 \\
x_2 + 2x_3 = 1
\end{array}$

There is one free variable x_3 , corresponding to the non-pivot column. To solve, we move the free variable to the right:

> $x_1 = -5x_3$ $x_2 = 1 - 2x_3$ $x_3 = x_3 \text{ (free; any real number)}$

This is the parametric solution. We can also write the solution as:

$$(-5x_3, 1-2x_3, x_3)$$

э

What is one particular solution? What does the set of solutions look like?

Free Variables

Solve the system of linear equations in x_1, x_2, x_3, x_4 :

$$\begin{array}{rcl} x_1 & +5x_3 & =0 \\ & & x_4 = 0 \end{array}$$

So the associated matrix is:

$$\left(\begin{array}{rrrr|rrr} 1 & 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

To solve, we move the free variable to the right:

$$x_1 = -5x_3$$

 $x_2 = x_2$ (free)
 $x_3 = x_3$ (free)
 $x_4 = 0$

Or: $(-5x_3, x_2, x_3, 0)$. This is a plane in \mathbb{R}^4 .

The original equations are the implicit equations for the solution. The answer to this question is the parametric solution.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Free variables

Geometry

If we have a consistent system of linear equations, with n variables and k free variables, then the set of solutions is a k-dimensional plane in \mathbb{R}^n .

Why does this make sense?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Poll

A linear system has 4 variables and 3 equations. What are the possible solution sets?

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

- 1. nothing
- 2. point
- 3. two points
- 4. line
- 5. plane
- 6. 3-dimensional plane
- 7. 4-dimensional plane

Implicit versus parametric equations of planes

Find a parametric description of the plane

x + y + z = 1

The original version is the implicit equation for the plane. The answer to this problem is the parametric description.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Summary

There are *three possibilities* for the reduced row echelon form of the augmented matrix of system of linear equations.

1. The last column is a pivot column.

 \rightsquigarrow the system is *inconsistent*.

$$\begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$$

2. Every column except the last column is a pivot column. ~ the system has a *unique solution*.

$$\begin{pmatrix} 1 & 0 & 0 & \star \\ 0 & 1 & 0 & \star \\ 0 & 0 & 1 & \star \end{pmatrix}$$

The last column is not a pivot column, and some other column isn't either.

 → the system has *infinitely many* solutions; free variables correspond to columns without pivots.

$$\begin{pmatrix} 1 & \star & 0 & \star & | \\ 0 & 0 & 1 & \star & | \\ \end{pmatrix}$$

- ロ ト - 4 回 ト - 4 □

Typical exam questions

True/False: If a system of equations has 100 variables and 70 equations, then there must be infinitely many solutions.

 $\mathsf{True}/\mathsf{False:}$ If a system of equations has 70 variables and 100 equations, then it must be inconsistent.

How can we tell if an augmented matrix corresponds to a consistent system of linear equations?

If a system of linear equations has finitely many solutions, what are the possible numbers of solutions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00