Section 2.2

Vector Equations and Spans

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline of Section 2.2

• Learn the equivalences:

vector equations \leftrightarrow augmented matrices \leftrightarrow linear systems

(ロ)、(型)、(E)、(E)、 E) の(()

- Learn the definition of span
- Learn the relationship between spans and consistency

Linear Combinations

Is
$$\begin{pmatrix} 8\\16\\3 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1\\2\\6 \end{pmatrix}$ and $\begin{pmatrix} -1\\-2\\-1 \end{pmatrix}$?

Write down an equation in order to solve this problem. This is called a vector equation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notice that the vector equation can be rewritten as a system of linear equations. Solve it!

Linear Combinations

Is
$$\begin{pmatrix} 8\\16\\3 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1\\2\\6 \end{pmatrix}$ and $\begin{pmatrix} -1\\-2\\-1 \end{pmatrix}$?

Linear combinations, vector equations, and linear systems

In general, asking:

Is b a linear combination of v_1, \ldots, v_k ?

is the same as asking if the vector equation

```
x_1v_1 + \dots + x_kv_k = b
```

is consistent, which is the same as asking if the system of linear equations corresponding to the augmented matrix

$$\begin{pmatrix} | & | & | & | & | \\ v_1 & v_2 & \cdots & v_k & b \\ | & | & | & | & | \end{pmatrix},$$

is consistent.

Compare with the previous slide! Make sure you are comfortable going back and forth between the specific case (last slide) and the general case (this slide).

The four ways

Four ways of saying the same thing:

- b is in Span $\{v_1, v_2, \dots, v_k\} \leftarrow \text{geometry}$
- b is a linear combination of v_1, \ldots, v_k
- the vector equation $x_1v_1 + \cdots + x_kv_k = b$ has a solution \leftarrow algebra

• the system of linear equations corresponding to

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_k & b \\ | & | & & | & | \\ \end{pmatrix},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

is consistent.

Summary of Section 2.2

- vector equations \leftrightarrow augmented matrices \leftrightarrow linear systems
- Checking if a linear system is consistent is the same as asking if the column vector on the end of an augmented matrix is in the span of the other column vectors.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Typical exam questions

Is
$$\begin{pmatrix} 8\\16\\1 \end{pmatrix}$$
 in the span of $\begin{pmatrix} 1\\2\\6 \end{pmatrix}$ and $\begin{pmatrix} -1\\-2\\-1 \end{pmatrix}$?

Write down the vector equation for the previous problem.

True/False: The vector equation $x_1v_1 + \cdots + x_kv_k = 0$ is always consistent.