Section 3.2

One-to-one and onto transformations

Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto

One-to-one and onto in calculus

What do one-to-one and onto mean for a function $f : \mathbb{R} \to \mathbb{R}$?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

One-to-one

A matrix transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .

In other words: different inputs have different outputs.

Do not confuse this with the definition of a function, which says that for each input x in \mathbb{R}^n there is at most one output b in \mathbb{R}^m .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

One-to-one

 $T:\mathbb{R}^n\to\mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in $\mathbb{R}^n.$

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- T is one-to-one
- the columns of A are linearly independent
- Ax = 0 has only the trivial solution
- A has a pivot in each column
- the range of T has dimension n

What can we say about the relative sizes of m and n if T is one-to-one?

Draw a picture of the range of a one-to-one matrix transformation $\mathbb{R} \to \mathbb{R}^3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Onto

A matrix transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .

Onto

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- T is onto
- the columns of A span \mathbb{R}^m
- A has a pivot in each row
- Ax = b is consistent for all b in \mathbb{R}^m
- the range of ${\cal T}$ has dimension ${\cal m}$

What can we say about the relative sizes of m and n if T is onto?

Give an example of an onto matrix transformation $\mathbb{R}^3 \to \mathbb{R}$.

One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 reflection
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 projection
$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$
 scaling
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 shear
$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 rotation

Which are one to one / onto?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robot arm

Consider the robot arm example from the book.

There is a natural function f here (not a matrix transformation). The input is a set of three angles and the co-domain is \mathbb{R}^2 . Is this function one-to-one? Onto?

The geometry

Say that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

The geometry of one-to-one:

The range has dimension n (and the null space is a point).

The geometry of onto:

The range has dimension m, so it is all of \mathbb{R}^m (and the null space has dimension n-m).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Summary of Section 3.2

- $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is one-to-one
 - the columns of A are linearly independent
 - Ax = 0 has only the trivial solution
 - A has a pivot in each column
 - \blacktriangleright the range has dimension n
- $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- T is onto
- \blacktriangleright the columns of A span \mathbb{R}^m
- A has a pivot in each row
- Ax = b is consistent for all b in \mathbb{R}^m .
- \blacktriangleright the range of T has dimension m

Typical exam questions

- True/False. It is possible for the matrix transformation for a 5×6 matrix to be both one-to-one and onto.
- True/False. The matrix transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by projection to the yz-plane is onto.
- True/False. The matrix transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation by π is onto.
- Is there an onto matrix transformation $\mathbb{R}^2 \to \mathbb{R}^3$? If so, write one down, if not explain why not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Is there an one-to-one matrix transformation $\mathbb{R}^2 \to \mathbb{R}^3$? If so, write one down, if not explain why not.

ふして 山田 ふぼやえばや 山下