Section 3.5

Matrix Inverses

Section 3.5 Outline

- The definition of a matrix inverse
- How to find a matrix inverse
- Inverses for linear transformations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inverses

To solve

Ax = b

we might want to "divide both sides by $A^{\!\prime\prime}.$

We will make sense of this...

Inverses

 $A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$AB = BA = I_n$$

B is called the inverse of A and is written A^{-1}

Example:

$$\left(\begin{array}{cc}2&1\\1&1\end{array}\right)^{-1}=\left(\begin{array}{cc}1&-1\\-1&2\end{array}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The 2×2 Case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then $det(A) = ad - bc$ is the determinant of A .

Fact. If det(A) $\neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If det(A) = 0 then A is not invertible.

Example.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$
.

Solving Linear Systems via Inverses

Fact. If A is invertible, then Ax = b has exactly one solution:

 $x = A^{-1}b.$

Solve

$$2x + 3y + 2z = 1$$
$$x + 3z = 1$$
$$2x + 2y + 3z = 1$$

Using

$$\left(\begin{array}{rrrr} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{array}\right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Solving Linear Systems via Inverses

What if we change b?

$$2x + 3y + 2z = 1$$
$$x + 3z = 0$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

So finding the inverse is essentially the same as solving all Ax = b equations at once (fixed A, varying b).

(ロ)、(型)、(E)、(E)、 E) の(()

Some Facts

Say that A and B are invertible $n \times n$ matrices.

- A^{-1} is invertible and $(A^{-1})^{-1} = A$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

What is $(ABC)^{-1}$?

A recipe for the inverse

Suppose $A = n \times n$ matrix.

- Row reduce $(A \mid I_n)$
- If reduction has form $(I_n | B)$ then A is invertible and $B = A^{-1}$.
- Otherwise, A is not invertible.

Example. Find
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}^{-1}$$

 $\begin{pmatrix} 1 & 0 & 4 & | 1 & 0 & 0 \\ 0 & 1 & 2 & | 0 & 1 & 0 \\ 0 & -3 & -4 & | 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 4 & | 1 & 0 & 0 \\ 0 & 1 & 2 & | 0 & 1 & 0 \\ 0 & 0 & 2 & | 0 & 3 & 1 \end{pmatrix}$
 $\sim \Rightarrow \begin{pmatrix} 1 & 0 & 0 & | 1 & -6 & -2 \\ 0 & 1 & 0 & | 0 & -2 & -1 \\ 0 & 0 & 1 & | 0 & 3/2 & 1/2 \end{pmatrix}$

What if you try this on one of our 2×2 examples, such as $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$?

Why Does This Work?

First answer: we can think of the algorithm as simultaneously solving

$$Ax_1 = e_1$$
$$Ax_2 = e_2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

and so on. But the columns of A^{-1} are $A^{-1}e_i$, which is x_i .

Matrix algebra with inverses

We saw that if Ax = b and A is invertible then $x = A^{-1}b$.

We can also, for example, solve for the matrix X, assuming that

AX = C + DX

Assume that all matrices arising in the problem are $n \times n$ and invertible.

Scaled vectors and invertibility

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Invertible Functions

A function $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a function $U: \mathbb{R}^n \to \mathbb{R}^n$, so

 $T \circ U = U \circ T =$ identity

That is,

$$T \circ U(v) = U \circ T(v) = v$$
 for all $v \in \mathbb{R}^n$

Fact. Suppose $A = n \times n$ matrix and T is the matrix transformation. Then T is invertible as a function if and only if A is invertible. And in this case, the standard matrix for T^{-1} is A^{-1} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Example. Counterclockwise rotation by $\pi/2$.

Which are invertible?

More rabbits

We can use our algorithm for finding inverses to check that

$$\left(\begin{array}{rrrr} 0 & 6 & 8\\ 1/2 & 0 & 0\\ 0 & 1/2 & 0 \end{array}\right)^{-1} = \left(\begin{array}{rrrr} 0 & 2 & 0\\ 0 & 0 & 2\\ 1/8 & 0 & -3/2 \end{array}\right).$$

Recall that the first matrix tells us how our rabbit population changes from one year to the next.

If the rabbit population in a given year is (60, 2, 3), what was the population in the previous year?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Summary of Section 3.5

• A is invertible if there is a matrix B (called the inverse) with

$$AB = BA = I_n$$

• For a 2×2 matrix A we have that A is invertible exactly when $\det(A)\neq 0$ and in this case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• If A is invertible, then Ax = b has exactly one solution:

$$x = A^{-1}b.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$
- Recipe for finding inverse: row reduce $(A | I_n)$.
- Invertible linear transformations correspond to invertible matrices.

Typical Exam Questions 3.5

Find the inverse of the matrix

$$\left(\begin{array}{rrrr} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{array}\right)$$

- Find a 2×2 matrix with no zeros that is equal to its own inverse.
- Solve for the matrix X. Assume that all matrices that arise are invertible:

$$C + BX = A$$

- True/False. If A is invertible, then A^2 is invertible?
- Which linear transformation is the inverse of the clockwise rotation of ℝ² by π/4?
- True/False. The inverse of an invertible linear transformation must be invertible.
- Find a matrix with no zeros that is not invertible.
- Are there two different rabbit populations that will lead to the same population in the following year?