Section 6.2 Orthogonal complements

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $W = \text{subspace of } \mathbb{R}^n$ $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ? What about the orthogonal complement of a plane in \mathbb{R}^3 ?

$$\begin{split} W &= \text{subspace of } \mathbb{R}^n \\ W^{\perp} &= \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{split}$$

Facts.

1. W^{\perp} is a subspace of \mathbb{R}^n (it's a null space!)

$$2. \ (W^{\perp})^{\perp} = W$$

3. dim $W + \dim W^{\perp} = n$ (rank-nullity theorem!)

4. If
$$W = \text{Span}\{w_1, \dots, w_k\}$$
 then
 $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$

5. The intersection of W and W^{\perp} is $\{0\}$.

For items 1 and 3, which linear transformation do we use?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1)\}$. Find the equation of the plane W^{\perp} .

Find a basis for W^{\perp} .

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^{\perp} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Find a basis for W^{\perp} .

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

In other words:

Theorem. $A = m \times n$ matrix

 $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$

 $\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

(The row space of A is the span of the rows of A.)

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

 $v = v_W + v_{W^{\perp}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why?

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why? Say that $w_1 + w'_1 = w_2 + w'_2$ where w_1 and w_2 are in W and w'_1 and w'_2 are in W^{\perp} . Then $w_1 - w_2 = w'_2 - w'_1$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.


```
Next time: Find v_W and v_{W^{\perp}}.
```

Orthogonal Projections

Many applications, including:

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Summary of Section 6.2

• $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$

• Facts:

- 1. W^{\perp} is a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.
- To find W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find the null space.
- Every vector v can be written uniquely as $v=v_W+v_{W^\perp}$ with v_W in W and v_{W^\perp} in W^\perp

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Typical Exam Questions 6.2

- What is the dimension of W^{\perp} if W is a line in \mathbb{R}^{10} ?
- What is W^{\perp} if W is the line y = mx in \mathbb{R}^2 ?
- If W is the x-axis in \mathbb{R}^2 , and $v = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$, write v as $v_W + v_{W^{\perp}}$.
- If W is the line y = x in \mathbb{R}^2 , and $v = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$, write v as $v_W + v_{W^{\perp}}$.
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ in \mathbb{R}^3 .
- Find a basis for the orthogonal complement of the line through $\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$ in \mathbb{R}^4 .
- What is the orthogonal complement of x_1x_2 -plane in \mathbb{R}^4 ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・