1. We defined the dimension of a subspace V to be the number of vectors in a basis for V. There's one problem: we haven't shown that all bases have the same number of vectors! The goal of this exercise is to explain why any two bases for V must have the same number of vectors.

Suppose $\{b_1, \ldots, b_k\}$ is a basis for the subspace V of \mathbb{R}^n. Let $\{a_1, \ldots, a_\ell\}$ be a set of vectors in V with $\ell > k$. We want to show that $\{a_1, \ldots, a_\ell\}$ is not a basis for V and we will do this by showing that $\{a_1, \ldots, a_\ell\}$ is linearly dependent.

Let A be the matrix $(a_1 \cdots a_\ell)$ and let B be the matrix $(b_1 \cdots b_k)$.

Step 1. For each a_i in A, explain why there is a vector c_i in \mathbb{R}^k so that $Bc_i = a_i$. **Hint:** think about converting vector equations to matrix equations.

If \vec{a}_i is in V, then \vec{a}_i is a linear combination of the basis $\{\vec{b}_1, \ldots, \vec{b}_k\}$.

Thus, $\vec{a}_i = c_{i,1}\vec{b}_1 + c_{i,2}\vec{b}_2 + \ldots + c_{i,k}\vec{b}_k$.

$\Rightarrow \vec{a}_i = \begin{bmatrix} c_{i,1} \\ c_{i,2} \\ \vdots \\ c_{i,k} \end{bmatrix} = B \begin{bmatrix} c_{i,1} \\ c_{i,2} \\ \vdots \\ c_{i,k} \end{bmatrix}$

Now let C be the matrix $(c_1 \cdots c_k)$.

Step 2. Explain why $Cx = 0$ has a nonzero solution. **Hint:** use the fact that $k < \ell$.

Recall that each vector \vec{c}_i is in \mathbb{R}^k.

Matrix C thus has k rows.

Matrix C also has ℓ columns, and $\ell > k$.

If a matrix has more columns than rows, it can't have a pivot in every column.

$\Rightarrow Cx = 0$ has nontrivial solution.
We have shown that no basis can have more vectors than another basis. Thus, all bases have the same number of vectors.

Now let $\tilde{u} = (u_1, \ldots, u_k)$ be a nonzero solution to $Cx = 0$.

Step 3. Show that $Au = 0$. Hint: Write Au as a linear combination of the a_i and then replace each a_i in the vector equation with Bc_i and then factor out the B.

$$A\tilde{u} = u_1 a_1 + u_2 a_2 + \ldots + u_k a_k$$
$$= u_1 Bc_1 + u_2 Bc_2 + \ldots + u_k Bc_k$$
$$= B[u_1 c_1 + u_2 c_2 + \ldots + u_k c_k]$$
$$= B[\tilde{c}]$$
$$= B \cdot 0$$
$$= 0$$

Thus, $Au = 0$.

Step 4. Conclude that $\{a_1, \ldots, a_k\}$ is linearly dependent and that any two bases for V have the same number of elements.

Since $Ax = 0$ has a nontrivial solution (see above), then the columns of A, or rather $\{a_1, \ldots, a_k\}$, are linearly dependent.

Thus, if $k \leq n$, the linear independence requirement for a basis is not met.

We have shown that no basis can have more vectors than another basis. Thus, all bases have the same number of vectors.