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1. We defined the dimension of a subspace V' to be the number of vectors in a basis for V.
There’s one problem: we haven’t shown that all bases have the same number of vectors! The

goal of this exercise is to explain why any two bases for V must have the same number of
vectors.

Suppose {b;, ..., b} is a basis for the subspace V of R™. Let {a,
in V with £ > k. We want to show that {a,,.
by showing that {a, ..

.,ar¢} be a set of vectors

.., 0z} is not a basis for V and we will do this
., ag} is linearly dependent.

Let A be the matrix (a; ---a;) and let B be the matrix (b; - - - by).

Step 1. For each a; in A, explain why there is a vector c; in R* so that Be; = a;. Hint: think
about converting vector equations to matriz equations.
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Now let C be the matrix (c; - - - ¢).

Step 2. Explain why Cz = 0 has a nonzero solution. Hint: use the fact that k < £.
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Now let @ = (uy,...,u,) be a nonzero solution to Cz = 0.

Step 8. Show that Au = 0. Hint: Weite Av as a linear combinalion. of the a; and then
replace each a; in the vector equation with Be; and then factor out the B.
Ad = 0,0y U054 .- PULD
| F\__‘
s _ N R
0BT # UBT, v r bl

Step 4. Conclude that {ay,...,a} is linearly dependent and that any two bases for V' have
the same number of elements.
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We have shown that no basis can have more vectors than another
basis. Thus, all bases have the same number of vectors.




