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Chapter 6

Orthogonality and Least Squares



Section 6.1

Inner Product, Length, and Orthogonality



Where are we?

We have one more main goal.

What if we can’t solve Ax = b? How can we solve it as closely as possible?

The answer relies on orthogonality.



Outline

* Dot products o{'bMM ~ WPW‘W\M

e Dot products and orthogonality
e Orthogonal projection
o A formula for projection onto a line

e Orthogonal complements



Dot product

Say u = (u1,...,u,) and v = (v1,...,v,) are vectors in R"
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Example. Find (1,2,3)-(4,5,6)g
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Dot product

Some properties of the dot product
e u-v= V- W
e (ut+v) w= TONE AR
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J
Dot product
and Length

Let v be a vector in R"
"

”’U” = \/vv - \] VI’Z._‘-V-?"L‘I_‘ ) +\/3 I; V:(VI,”-/V’\)

(> 'A(-) = length (or norm) of v
Why? - V* N(o,4)\ =\ 25+ 4> = 5
Fact- llevl =ellell 16, €Y\ = 2.5 \0 (1
v is a unit vector of ||v]| =1

Problem. Find the unit vector in the direction of (1,2, 3,4).
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Problem. Find the distance between (1,1,1) and (1,4, —3).
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Orthogonality N

Fact. u Lveu-v=0 ) \\\L”\l\\
Why? WLV & Ilul|1+|lv}fL¢ HU\«—V“ \
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Problem. Find a vector in R® orthogonal to (1,2, 3).
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Orthogonal Projections

Let W be a subspace of R™ and v a vector in R".
N
projy, (v) = orthogonal projection to W of v
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'Say’u and v are vectors in R™. Can project u to (v) = Span{v}.
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Orthogonal Projections /\

Many applications, including:
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Orthogonal complements

W = subspace of R" \[JA‘
W+ ={vinR"|v_Lwforall win W}

Question. What is the orthogonal complement of a line in R*?

\ana.
Facts. f)
1. W is a subspace of R"
(W) =W

2
3. dim W +dimW+ =n
4. If W = Span{ws, ..., wx} then W+ = {v in R" | v L w; for all i} \005\5



Orthogonal complements
Finding them

Problem. Let W = Span{(1,1, —1)}. Find the equation of the plane W,
- -va)=0  x+y-z2=0
Problem. Let W = Span{(1,1,—1),(—1,2,1)}. Find the eqn of the line W~.
(\,\)“ﬂ ) (.X;\Jl‘l%‘) =0
(-1,2,1) - (kN2 =0




Orthogonal complements
Finding them

Problem. Let W = Span{(1,1,—1),(—1,2,1)}. Find the eqn of the line W+

Theorem. A = m X n matrix

(RowA)" = Nul A

Why? Ax = 0 < x is orthogonal to each row of A



