Announcements April 13

• WebWork 6.1 and 6.2 due Thursday

• Quiz on 6.1 and 6.2 on Friday

- Final Exam Wed May 4 8:00-10:50 (Sec H) and Mon May 2 2:50-5:40 (Sec J)
- Office Hours Tue 2-3 and Wed 2-3
- LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Shivang Tue 5-6, Baishen Wed 4-5, Matt Thu 3-4
- Math Lab, Clough 280
	- Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
	- Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
	- LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6

Section 6.2 Orthogonal Sets

◆ロト→伊ト→ミト→ミト ミーのQC

Where are we?

We have one more main goal.

What if we can't solve $Ax = b$? How can we solve it as closely as possible?

K ロ ≯ K 個 ≯ K ミ ≯ K ミ ≯

扂

 $2Q$

The answer relies on orthogonality. Last time we saw how to project onto a line. Now we will project onto higher-dimensional planes.

Outline

Orthogonal bases

• A formula for projecting onto any subspace

Breaking a vector into components

K ロ ▶ K d P → K 로 ▶ K 로 ▶ 기로 및 수 이익(연

Orthogonal Sets

A set of vectors is orthogonal if each pair of vectors is orthogonal. It is orthonormal if in addition each vector is a unit vector.

Example.

$$
B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}
$$

Fact. An orthogonal set of nonzero vectors is linearly independent.

Use vector-by-vector method: Why? u_2 not in span of u_1 $a+c...$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ │ ヨ

Orthogonal bases

Finding coordinates with respect to orthogonal bases

What happens if y is not in W ? The formula still works! But it gives the projection of y to W .

K ロ ≯ K 何 ≯ K ヨ ≯ K ヨ ≯

重

 OQ

Fact. Say that $\{u_1,\ldots,u_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and say that y is in W . Then May $y = \sum_{i=1}^{N} c_i \frac{y_i}{y_i}$ $\left(\begin{array}{cc} 1 & -4 \\ 2 & 3 \end{array}\right)$ where $c_i = \frac{y \cdot u_i}{u_i \cdot u_i}$ \sim $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ $(0, 3)$ Problem. Find the B -coordinates of \mathscr{W} where $B=\left\{\left(\begin{array}{c}1\\2\end{array}\right),\left(\begin{array}{c}-4\\2\end{array}\right)\right\}$ $y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2$ $= \frac{6}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{6}{20} \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ Answer: $\left(\frac{6}{5}, \frac{6}{20}\right)\sqrt{5.5}u$ $(1.2, 0.4)$ **≮ロト ⊀母 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶** Ξ OQ

Fact. Say that $\{u_1,\ldots,u_k\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and say that y is in W . Then

Section 6.3 Orthogonal projections

K ロ ▶ K 日 ▶ K 로 ▶ K 로 ▶ │ 로 │ め Q @

Where are we?

We have one more main goal.

What if we can't solve $Ax = b$? How can we solve it as closely as possible?

Kロト K団 K K ミト K ミト / ミー のQ (V

The answer relies on orthogonality.

Outline

- *•* Projecting onto any subspace: a formula
- *•* Projections and best possible solutions

Orthogonal projection

Projecting onto a line

Recall:

$$
\operatorname{proj}_{\langle u \rangle}(v) = \frac{v \cdot u}{u \cdot u} u
$$

Can use this to break *v* into two components:

$$
v=v_L+v_{L^\perp}
$$

where $L = \langle u \rangle$ and v_L is $proj_{\langle u \rangle}(v)$ and $v_{L^{\perp}} = v - v_L$.

Problem. Let $u = (1, 2)$ and $L = \langle u \rangle$. Let $v = (1, 1)$. Write *v* as $v_L + v_{L^{\perp}}$.

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶ │ 듣 │ ◆) Q (◇

Next: replace *L* with any subspace.

Orthogonal projection
\nProjection
\nProjection
\nTherefore. Say W a subspace of Rⁿ and y in Rⁿ. We can write y uniquely as:
\n
$$
\text{where } \mathbb{E} \text{ where } \mathbb{E} \text{ and } \
$$

Kロト K団 K K モト K ヨ K コ ラ Q Q C

Orthogonal projection

Matrices for projections

Find A so that T_A is orthogonal projection onto

K ロ X - K + X 로 X X 로 X 로 → O Q Q →

Orthogonal projection

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ○唐 $2Q$

Best approximation

 $W =$ subspace of \mathbb{R}^n

Fact. The projection y_W is the point in W closest to y . In other words:

K ロ ▶ K d P → K 로 ▶ K 로 ▶ _ 로 → 9 Q Q →

Best approximation

Problem. Find the distance from e_1 to $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$