Announcements April 13

WebWork 6.1 and 6.2 due Thursday

Quiz on 6.1 and 6.2 on Friday \I\[(i“r\{m \“\W q Aub EL
Final Exam Wed May 4 8:00-10:50 (Sec H) and Mon May 2 2:50-5:40 (Sec J)
Office Hours Tue 2-3 and Wed 2-3

LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Shivang Tue 5-6, Baishen Wed 4-5,
Matt Thu 3-4

Math Lab, Clough 280
* Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
e Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12

e LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6



Section 6.2

Orthogonal Sets



Where are we?

We have one more main goal.

What if we can’t solve Ax = b? How can we solve it as closely as possible?

e

The answer relies on orthogonality. Last time we saw how to proj
line. Now we will project onto higher-dimensional planes.



Outline

2 ]
e A formula for projecting onto any subspa@

» Breaking a vector into components
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Orthogonal Sets

A set of vectors is orthogonal if each pair of vectors is orthogonal.(lt IS
orthonormal if in addition each vector is a unit vector. \A

Example.
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Fact. An orthogonal set of nonzero vectors is linearly independent.
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Orthogonal bases

Finding coordinates with respect to orthogonal bases

—
p—

Fact. Say that {u1,...,ux} is an orthogonal basis for a subspace W of R™ and
say that y is in W. Then
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In other words:

Why?

What happens if y is not in W7 The formula still works! But it gives the
projection of y to W.



Fact. Say that {u;,...,ux} is an orthogonal basis for a subspace W of R™ and

say that y is in W. Then
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Problem. Find the B-coordinates of W where O \ 20
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Faet. i Say thated ti.ese uk } is an orthogonal basis for a subspace W of R™ and
say that y is in W. Then )
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Section 6.3

Orthogonal projections



Where are we?

We have one more main goal.

What if we can’t solve Ax = b? How can we solve it as closely as possible?

The answer relies on orthogonality.



Outline

e Projecting onto any subspace: a formula

e Projections and best possible solutions



Orthogonal projection

Projecting onto a line

Recall:
VU

proj,y (v) = ——u

u-u

Can use this to break v into two components:
V=7V +VpL

where L = (u) and vy, is proj,,(v) and v,. = v —vr.

Problem. Let u = (1,2) and L = (u). Let v = (1,1). Write v as vp + v 1.

Next: replace L with any subspace.



Or.thqgonal projection (§7 )"S")/}O)O)\ (\) O)O\:' g—?

Projecting onto any subspace

Theorem. Say W a subspace of R™ and y in R". We can write y uniquely as:
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Moreover, if {ui,...,ur} is an orthogonal basis for W the
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Problem. Let W = Span{ ( 0 ) , ( 1 ) } and y = e;. Find yw.
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Orthogonal projection

Matrices for projections

Find A so that T4 is orthogonal projection onto
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Orthogonal projection -
T Ty = Tey

— Poll

Suppose T4 is orthogonal projection onto a plane in R”.
What is A% equal to?
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Best approximation

W = subspace of R"

Fact. The projection yw is the point in W closest to . In other words:

b=l <=l |
'5

for any w in W other than y,,. \\
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Best approximation

Problem. Find the distance from e; to W = Span



