Announcements Feb 17

- WebWork 2.1 and 2.2 due Thursday
- Homework 4 due in class Friday \bullet
- Midterm 2 in class Friday Mar 11 on Chapters 2 & 3 \bullet
- Office Hours Tuesday and Wednesday 2-3, after class, and by appt in Skiles 244 or 236 \bullet
- LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Baishen Wed 4-5, Matt Thu 3-4, Shivang Fri 10:30-11 + 12:30-1
- Math Lab, Clough 280 \bullet
	- Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
	- Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
	- LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6

Section 2.2

The Inverse of a Matrix

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (º

Inverses

 $A = n \times n$ matrix.

 A is invertible (or nonsingular) if there is a matrix B with

$$
AB=BA=\pm
$$

B is called the inverse of A and is written A^{-1}

Example:

$$
\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \ -1 & 2 \end{pmatrix}
$$

$$
\begin{pmatrix} \frac{2}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} \end{pmatrix} \begin{pmatrix} 1 & -1 \ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}
$$

K ロ > K d → K 로 → K 로 → 트 → D Q Q →

The 2×2 Case

Let
$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
. Then $det(A) = ad - bc$ is the determinant of A.
det $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2$.

 $\left(\frac{ab}{cd}\right)\left(\frac{d}{cd}\right)^{b}$

 $=\begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 ▶)

 OQ

Fact. If det $(A) \neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If $det(A) = 0$ then A is not invertible.

Example.
$$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}
$$

Solving Linear Systems via Inverses

Fact. If A is invertible, then $Ax = b$ has exactly one solution, namely

Example. Solve

 $2x + 3y + 2z = 1$
 $x + 3z = 1$
 $2x + 2y + 3z = 1$
 $\left(\begin{array}{c} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{array}\right)$

x

Using

$$
\begin{pmatrix} 2 & 3 & 2 \ 1 & 0 & 3 \ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \ 3 & 2 & -4 \ 2 & 2 & -3 \end{pmatrix} \qquad \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{pmatrix}
$$

$$
\chi = \Lambda^{-1} b = \begin{pmatrix} -6 & -5 & 9 \ 3 & 2 & -4 \ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} = \begin{pmatrix} -2 \ +1 \ 1 \end{pmatrix} \qquad \text{just do } \Lambda^{-1} \begin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix}
$$

イロト イ団 トイヨ トイヨト 重 OQ

Some Facts

Say that A and B are invertible $n \times n$ matrices.

• A^{-1} is invertible and $(A^{-1})^{-1} = A$
• AB is invertible and $(AB)^{-1} = A^{-1}A^{-1}$ • A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$ A^{\dagger} $(A^{-1})^{\dagger}$ $=(A^{-1}A)^{\top}$ Q. What is $(ABC)^{-1}$? $= \pm \sqrt{1} = \pm \sqrt{1}$ $C^{-1}B^{-1}A^{-1}$
(ABC) $(C^{-1}B^{-1}A^{-1})=I$ $XY^T = Y^T X^T$

イロト イ母 トイ ヨ ト イヨ トー ヨー

 $2Q$

An Algorithm for Finding A^{-1}

Suppose $A = n \times n$ matrix.

- Row reduce $(A | I_n)$
- If reduction has form $(I_n | B)$ then A is invertible and $B = A^{-1}$.
- \bullet Otherwise, A is not invertible.

Example. Find
$$
\begin{pmatrix} 1 & 0 & 4 \ 0 & 1 & 2 \ 0 & -3 & -4 \end{pmatrix}^{-1}
$$

\n $\begin{pmatrix} 1 & 0 & 4 \ 0 & 1 & 2 \ 0 & -3 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}$
\n $\rightarrow \begin{pmatrix} 10 & 0 & 1-6-2 \ 0 & 0 & 2 & 1 \ 0 & 0 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & 0 & 1-6-2 \ 0 & 10 & 3 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}$
\nThus, the inverse is

Why Does This Work?

First answer: we can think of the algorithm as simultanenously solving

$$
Ax_1 = e_1
$$

$$
Ax_2 = e_2
$$

Kロト K団 K K ミト K ミト / ミー のQ (V

and so on. But the columns of A^{-1} are $A^{-1}e_i$, which is x_i .

There is another explanation, which uses elementary matrices.

Elementary matrices

An elementary matrix, E , is one that differs by I_n by one row operation.

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Fact. If E is an elementary matrix for some row operation, then EA differs from A by same row operation.

Why? Check for each type. $\left(\frac{0}{10}\right)\left(\frac{1}{3}\left|\frac{2}{4}\right| = \left(\frac{3}{12}\right)\left(\frac{4}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{4}\right) = \left(\frac{7}{3}\right)\left(\frac{10}{4}\right)$ Elementary matrices are invertible. *Fact.* mentary matrices are invertible.
 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 10 \\ 10$ $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ 4 ロ ト 4 団 ト 4 ミ ト 4 ミ ト - ミ - ウ Q Q

Elementary matrices

Observation. An $n \times n$ matrix A is invertible iff it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} . This gives us a second explanation of the algorithm. $(A|I_n)$

 $\sim\left(I_{n}|\mathcal{K}^{1}|\right)$

÷

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Why is it true?

Row ops taking A to In $(E_{k}\cdots E_{2}E)A=\mathbb{T}_{n}$ $(E_{k} \cdots E_{2} E_{1}) A K^{-1} = I_{n} K^{1}$ $(E_{k} \cdot E_{l})$ $In = A^{-1}$

Structural Engineering

Suppose we put 3 downward forces on an elastic beam.

By Hooke's law, the vertical displacements at those three points y_1, y_2, y_3 are given by a linear transformation.

Stiffness

\nMultiply

\n
$$
\begin{pmatrix}\nf_1 \\
f_2 \\
f_3\n\end{pmatrix} = \begin{pmatrix}\ny_1 \\
y_2 \\
y_3\n\end{pmatrix}
$$
\nIf we want to achieve a certain displacement, use $\frac{dy}{dx}$ to find the required forces.

\n
$$
\begin{pmatrix}\n\frac{y_1}{2} \\
\frac{y_2}{3}\n\end{pmatrix} = \begin{pmatrix}\n\frac{y_1}{2} \\
\frac{y_2}{3}\n\end{pmatrix}
$$
\nIf $\frac{y_1}{2} = \begin{pmatrix}\n\frac{y_1}{2} \\
\frac{y_2}{3}\n\end{pmatrix} = \begin{pmatrix}\n\frac{y_1}{2} \\
\frac{y_2}{3}\n\end{pmatrix}$