Section 2.3

Characterizations of Invertible Matrices

The Invertible Matrix Theorem

Suppose $A = n \times n$ matrix, and $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

- a) A is invertible
- b) A is row equivalent to I_n
- c) A has n pivots
- d) Ax = 0 has only 0 solution
- e) columns of A are linearly independent
- f) T_A is one-to-one
- g) Ax = b is consistent for all b in \mathbb{R}^n
- h) columns of A span \mathbb{R}^n
- i) T_A is onto

- I) A^T is invertible

j) A has a left inverse BA = Ink) A has a right inverse AR = In

(ロ) (部) (ヨ) (ヨ) ヨ

DQA

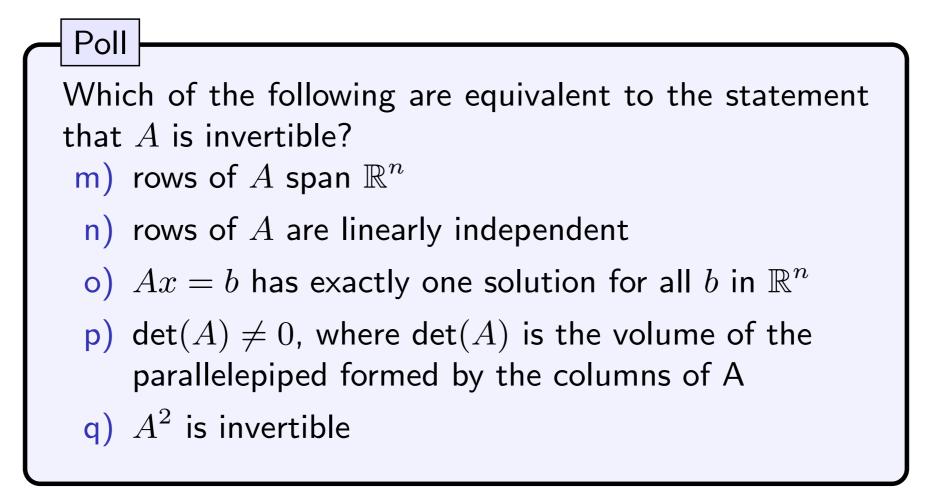
The Invertible Matrix Theorem

There are two kinds of square matrices, invertible (or non-singular), and non-invertible (or singular) matrices.

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The Invertible Matrix Theorem



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 り < ○

Invertible Functions

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is **invertible** if there is a function $g : \mathbb{R}^m \to \mathbb{R}^n$, so

$$f \circ g = g \circ f =$$

That is,

Fact. Suppose $A = n \times n$ matrix. Then T_A is invertible as a function if and only if . And in this case,

$$(T_A)^{-1} = \boxed{A^{-1}}$$

うびの 川 (中) (日) (日) (日)

Why?