Announcements Feb 25

- Keeps tabs on your grades in TSquare
- WebWork 2.3 and 2.5 due Thursday
- · Homework 5 due in class Friday (use a computer)
- Quiz 5 on 2.3 and 2.5 in class Friday
- Midterm 2 in class Friday Mar 11 on Chapters 2 & 3
- Office Hours Tuesday and Wednesday 2-3, after class, and by appt in Skiles 244 or 236
- LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Baishen Wed 4-5, Matt Thu 3-4, Shivang Fri 10:30-11 + 12:30-1
- Math Lab, Clough 280
 - Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
 - Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
 - LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6

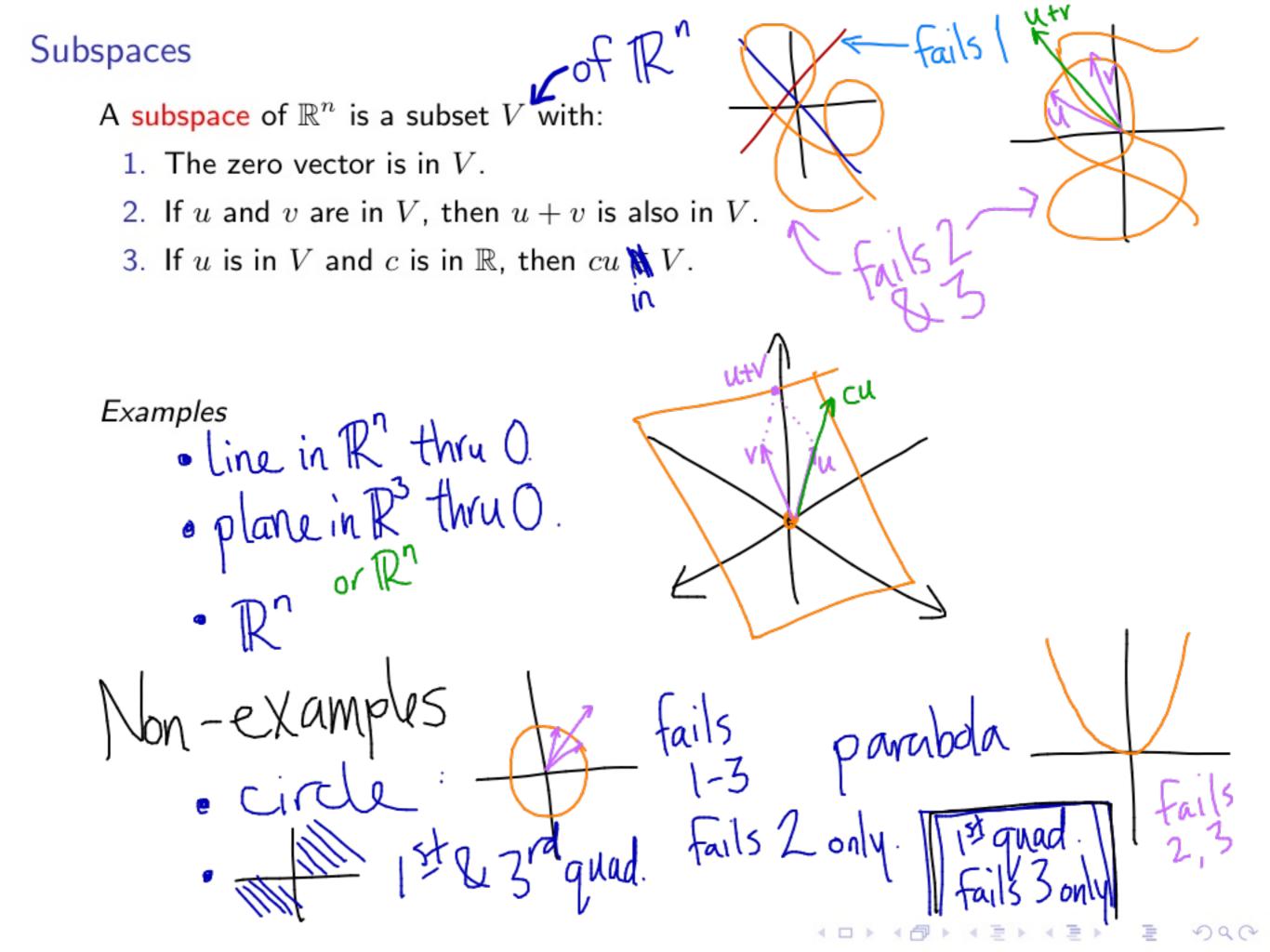
Section 2.8 Subspaces of \mathbb{R}^n

・ロト・・・</l

Subspaces

Outline

- Definition of subspace
- Examples and non-examples of subspaces
- Subspaces are the same as spans
- Bases for subspaces
- Two important subspaces for a matrix: Col(A) and Nul(A)



Spans are subspaces

Fact. Any $Span\{v_1, \ldots, v_k\}$ is a subspace. Why? Check 3 properties (1) take () (in. comb. (2) $(3v_1 + 2v_2) + (v_1 + v_2) = 4v_1 + 3v_2$ (3) Similar.

Note the following.

• If $V = \text{span}\{v_1, v_2, \dots, v_k\}$, say V is the subspace generated by v_1, v_2, \dots, v_k .

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

DQQ

Which are subspaces?

PollWhich are subspaces? For those that are not subspaces,
which part of the definition fails?1.
$$\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid a = 0 \right\}$$
 Ves $pan \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ 2. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid a + b = 0 \right\}$ Ves $pan \left\{ \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ 3. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid ab = 0 \right\}$ No4. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid ab \neq 0 \right\}$ NO5. $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \text{ in } \mathbb{R}^2 \mid a, b \text{ rational} \right\}$ No

Subspaces are spans

Fact. Every subspace V is equal to some span.

Why?

V = 5 pan V

We already said that all spans were subspaces, so now we know that three things are the same:

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● のへで

spans
subspaces
planes thru 0

Column Space and Null Space

 $A = m \times n$ matrix. - a subspace! hence a span. Check property 2: Col(A) = column space of A = span of the columns of A $Nul(A) = null space of A = set of solutions to <math>Ax = 0 \leftarrow$ Example. $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\chi_2(-1)$ $Nul(A) = 5 pan \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ A = -X

Column Space and Null Space

 $A = m \times n$ matrix. $Col(A) = subspace of R^{M}$ $Nul(A) = subspace of R^{M}$ Why? We checked on last slide.

Note that it is easier to check that Nul(A) is a subspace than it is to check that Nul(A) is a span.

Bases

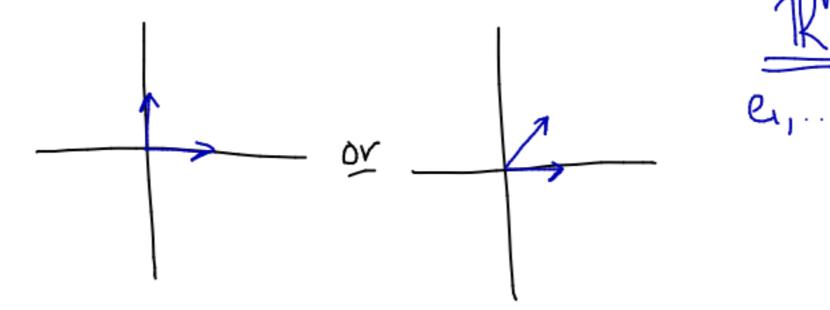
 $V = subspace of \mathbb{R}^n$

A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

- 1. $V = \operatorname{span}\{v_1, \ldots, v_k\}$
- 2. the v_i are linearly independent

$$\dim(V) = \text{dimension of } V = k = \# \text{vectors in basis}$$

Q. What is one basis for \mathbb{R}^2 ? \mathbb{R}^n ?



. Rn

< □ > < □ > < □ > < □ > < □ >

E

DQC

Bases for Nul(A) and Col(A)

Q. Find bases for Nul(A) and Col(A)

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right)$$

Bases for Nul(A) and Col(A)

In general:

- our usual parametric solution for Ax = 0 gives a basis for Nul(A)
- the pivot columns of A form a basis for Col(A)

Warning! Not the pivot columns of the reduced matrix.



< □ > < □ > < □ > < □ > < □ >

I

Fact. If $A = n \times n$ matrix, then:

A is invertible $\Leftrightarrow \operatorname{Col}(A) = \mathbb{R}^n$