Announcements Feb 8

• Please complete mid-semester CIOS evaluations this week

• WebWork 1.7 and 1.8 due Thursday

• WebWork 1.9 extra credit, due Thursday

• Midterm 1 in class this week Friday Feb 12 on Chapter 1

• Office Hours Tuesday and Wednesday 2-3, after class, and by appointment in Skiles 244 or 236

• LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Baishen Wed 4-5, Matt Thu 3-4, Shivang Fri 10:30-11 + 12:30-1

• Math Lab, Clough 280
 • Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
 • Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
 • LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6
Section 1.9

The Matrix of a Linear Transformation
Linear transformations are matrix transformations

A function \(T : \mathbb{R}^n \to \mathbb{R}^m \) is linear if

- \(T(u + v) = T(u) + T(v) \) for any \(u, v \) in \(\mathbb{R}^n \)
- \(T(cv) = cT(v) \) for any \(v \) in \(\mathbb{R}^n \), \(c \) in \(\mathbb{R} \)

Main point: if we know \(T(e_1), \ldots, T(e_n) \), then we know every \(T(v) \).

\[
e_1 = (1, 0, 0, \ldots, 0) \\
e_2 = (0, 1, 0, \ldots, 0) \\
 \vdots
\]

Recall that every matrix transformation \(T_A \) is linear.

\[
T_A(v) = AV = m \times n \\
A \times n \times n \times 1
\]

Theorem. A function \(\mathbb{R}^n \to \mathbb{R}^m \) is linear if and only if it is a matrix transformation.
Linear transformations are matrix transformations

Theorem. A function $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is linear if and only if it is a matrix transformation.

This means that for any linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ there is an $m \times n$ matrix A so:

$$T_A(v) = Av = T(v)$$

Why?

$$A = \left(T(e_1) \ T(e_2) \ \ldots \ T(e_n) \right)_{n \times m}$$

$T_A(v) = Av = (T(e_1) \ T(e_2) \ \ldots \ T(e_m))v = v_1 T(e_1) + \ldots + v_n T(e_n) = T(v_1 e_1 + \ldots + v_n e_n) = T(v)$
Linear transformations are matrix transformations

Q. Find the matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the x-direction and 3 in the y-direction, and then reflects over the line $y = x$.

$$A = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \quad T(\begin{pmatrix} 5 \\ -1 \end{pmatrix}) = \begin{pmatrix} 6 & 3 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 10 \end{pmatrix}$$
Linear transformations are matrix transformations

Q. Find the matrix for the linear transformation of \mathbb{R}^2 that projects onto the y-axis and then rotates counterclockwise by $\pi/2$.
Linear transformations are matrix transformations

Q. Find the matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.
Discussion

Discussion Question

Find a matrix that does this.

$$\begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
One-to-one

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is **one-to-one** if each \(b \) in \(\mathbb{R}^m \) is the image of at most one \(v \) in \(\mathbb{R}^n \).

Not one-to-one means two inputs w/ same output.

Theorem. Suppose \(T_A : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation corresponding to a matrix \(A \). Then the following are all equivalent:

- \(T_A \) is one-to-one
- the columns of \(A \) are lin ind.
- \(Ax = 0 \) has only 0 soln.
- \(A \) has a pivot... every col.

Q. What can we say about the relative sizes of \(m \) and \(n \) if \(T_A \) is one-to-one?

\[
\begin{array}{ccc}
\begin{array}{ccc}
\bigcirc & \bigcirc & \bigcirc \\
\bigcirc & \bigcirc & \bigcirc \\
\bigcirc & \bigcirc & \bigcirc \\
\end{array}
\end{array}
\]

\(M \geq N \)

Q. Draw a picture of the image of a one-to-one mapping \(\mathbb{R} \to \mathbb{R}^3 \)
Onto

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is onto if the image of \(T \) is \(\mathbb{R}^m \), that is, each \(b \) in \(\mathbb{R}^m \) is the image of at least one \(v \) in \(\mathbb{R}^m \).

Theorem. Suppose \(T_A : \mathbb{R}^n \to \mathbb{R}^m \) is a linear transformation corresponding to a matrix \(A \). Then the following are all equivalent:

- \(T_A \) is onto
- the columns of \(A \) span \(\mathbb{R}^m \)
- \(A \) has a pivot in every row
- \(Ax = b \) is consistent for all \(b \).

Q. What can we say about the relative sizes of \(m \) and \(n \) if \(T_A \) is onto?

\[n \geq m \]
(\(\square \)(\(\square \))

Q. Give an example of an onto mapping \(\mathbb{R}^3 \to \mathbb{R} \)
One-to-one and Onto

Do the following give linear transformations that are one-to-one? onto?

\[
\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 2 \\
0 & 0 & 9
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 1
\end{pmatrix}
\]