Math 1553 Introduction to Linear Algebra

School of Mathematics Georgia Institute of Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction to Linear Algebra

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Linear. Algebra.

What is Linear Algebra?

Linear

Algebra

- from al-jebr (Arabic), meaning reunion of broken parts
- 9^{th} century Abu Ja'far Muhammad ibn Muso al-Khwarizmi

(ロ)、(型)、(E)、(E)、 E) の(の)

Linear Algebra in Engineering

Almost every engineering problem, no matter how huge, can be reduced to linear algebra:

$$Ax = b$$
 o

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$Ax = \lambda x$$

Civil Engineering: How much traffic lies in the four unlabeled segments?

(日)、(四)、(E)、(E)、(E)

Chemistry: Balancing reaction equations

$$\underline{\qquad} \mathsf{C}_2\mathsf{H}_6 + \underline{\qquad} \mathsf{O}_2 \rightarrow \underline{\qquad} \mathsf{CO}_2 + \underline{\qquad} \mathsf{H}_2\mathsf{O}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Biology: In a population of rabbits...

- · half of the new born rabbits survive their first year
- of those, half survive their second year
- the maximum life span is three years
- rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population in 2016 (in terms of the number of first, second, and third year rabbits), then what is the population in 2017?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry and Astronomy: Find the equation of a circle passing through 3 given points, say (1,0), (0,1), and (1,1). The general form of a circle is $a(x^2 + y^2) + bx + cy + d = 0 \rightsquigarrow$ system of linear equations.

Very similar to: compute the orbit of a planet: $a(x^2 + y^2) + bx + cy + d = 0$

Google: "The 25 billion dollar eigenvector." Each web page has some importance, which it shares via outgoing links to other pages \rightsquigarrow system of linear equations. Stay tuned!

Overview of the course

- Solve systems of linear equations using matrices and row reduction, inverses, and LU decompositions
- Solve systems of linear equations with varying parameters using parametric forms for solutions, the geometry of linear transformations, the characterizations of invertible matrices, and determinants
- Solve eigenvalue problems through the use of the characteristic polynomial
- Understand the dynamics of a linear transformation via the computation of eigenvalues, eigenvectors, and diagonalization
- Find best-fit solutions to systems of linear equations that have no actual solution using least squares approximations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <