Announcements Mar 28

- WebWork 5.2 and 5.3 due Thursday
- Quiz 8 on 5.2 and 5.3 on Friday
- Homework 7 due Friday April 8
- Midterm 3 in class Friday April 8 on Chapter 5

- Office Hours Tuesday and Wednesday 2-3, after class, and by appt in Skiles 244 or 236

- LA Office Hours: Scott Mon 12-1, Yashvi Mon 2-3, Shivang Tue 5-6, Baishen Wed 4-5, Matt Thu 3-4

- Math Lab, Clough 280
 - Regular hours: Mon/Wed 11-5 and Tue/Thu 11-5
 - Math 1553 hours: Mon-Thu 5-6 and Tue/Thu 11-12
 - LA hours: Matt Tue 11-12, Scott Tue 5-6, Baishen Thu 11-12, Yashvi/Shivang Thu 5-6
Section 5.3
Diagonalization
5.3 Diagonalization

Outline

- Taking powers of diagonal matrices is easy
- Taking powers of diagonalizable matrices is still easy
- Algebraic multiplicity vs geometric multiplicity vs diagonalizability
- Application: networks

\[(x-1)^2\]
Powers of diagonal matrices

We have seen that it is useful to take powers of matrices: for instance in computing rabbit populations.

\[\mathbf{v}, \mathbf{A}\mathbf{v}, \mathbf{A}^2\mathbf{v}, \mathbf{A}^3\mathbf{v} \]

If \(\mathbf{A} \) is diagonal, \(\mathbf{A}^k \) is easy to compute. For example:

\[
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}^{10} = \begin{pmatrix}
2^{10} & 0 \\
0 & 3^{10}
\end{pmatrix}
\]
Powers of matrices that are similar to diagonal ones

What if A is not diagonal? Suppose we need to compute

$$
\begin{pmatrix}
1 & 2 \\
-1 & 4
\end{pmatrix}^{10}
$$

What would we do?

Earlier in the notes, we saw this matrix is similar to a diagonal one:

$$
\begin{pmatrix}
1 & 2 \\
-1 & 4
\end{pmatrix} = \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix} \begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix} \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}^{-1}
$$

“diagonalization”

So...

$$
A^2 = (C B C^{-1})(C B C^{-1}) = C B^2 C^{-1}
$$

$$
A^{10} = C B^{10} C^{-1} = \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix} \begin{pmatrix}
2^{10} & 0 \\
0 & 3^{10}
\end{pmatrix} \begin{pmatrix}
1 & -1 \\
-1 & 2
\end{pmatrix}
$$

$$
A^3 = C B C^{-1} B C^{-1} C B C^{-1} = C B^3 C^{-1}
$$
Diagonalization

Suppose A is $n \times n$. We say that A is diagonalizable if it is similar to a diagonal matrix:

$$A = CDC^{-1}$$ \hspace{2cm} D = \text{diagonal}$$

How does this factorization of A help describe what A does to \mathbb{R}^n?

$$
\begin{pmatrix}
1 & 2 \\
-1 & 4
\end{pmatrix} =
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}^{-1}
$$

$C(e_1) = (2)$
$C(e_2) = (1)$
$C^{-1}(2) = e_1$
$C^{-1}(1) = e_2$

eigenspaces for A
eigenvectors
eigenvalues

eigenspaces for A
Theorem. A is diagonalizable \(\iff \) \(A \) has \(n \) linearly independent eigenvectors.

In this case

\[
A = (v_1 \ v_2 \ \cdots \ v_n) \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} (v_1 \ v_2 \ \cdots \ v_n)^{-1}
\]

where \(v_1, \ldots, v_n \) are linearly independent eigenvectors and \(\lambda_1, \ldots, \lambda_n \) are the corresponding eigenvalues (in *order*).

Why?
Diagonalization

Fact. If A is diagonalizable, bases for the eigenspaces give a basis for \mathbb{R}^n.

Why?
Example

Diagonalize if possible.

\[
\begin{pmatrix}
2 & 6 \\
0 & -1
\end{pmatrix}
\]

Eigenvalues

\[
\det \begin{pmatrix}
2 - \lambda & 6 \\
0 & -1 - \lambda
\end{pmatrix} \rightarrow \lambda = 2, -1
\]

Distinct.

Eigenvalues

\[
\begin{pmatrix}
\lambda = 2 \\
0 & 6 \\
0 & -3
\end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\
0 & 0
\end{pmatrix} \rightarrow \text{eigenvector} \begin{pmatrix} 1 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
\lambda = -1 \\
3 & 6 \\
0 & 0
\end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\
0 & 0
\end{pmatrix} \rightarrow \text{eigenv.} \begin{pmatrix} -2 \\
1
\end{pmatrix}
\]

\[
x_1 + 2x_2 = 0 \\
x_2 \text{ free}, x_1 = -2x_2
\]

Finally:

\[
\begin{pmatrix}
2 & 6 \\
0 & -1
\end{pmatrix} = \begin{pmatrix} 1 & -2 \\
0 & 1
\end{pmatrix} \begin{pmatrix} 2 & 0 \\
0 & -1
\end{pmatrix} \begin{pmatrix} 1 & -2 \\
0 & 1
\end{pmatrix}^{-1}
\]
Example

Diagonalize if possible.

\[
\begin{pmatrix}
3 & 1 \\
0 & 3 \\
\end{pmatrix}
\]

eigenvalues: \(3\) (alg mult. = 2)

eigenvectors:
\[
\begin{pmatrix}
0 & 1 \\
0 & 0 \\
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 \\
0 \\
\end{pmatrix}
\]

Another example

\[
A = \begin{pmatrix}
3 & 0 \\
0 & 3 \\
\end{pmatrix}
\]

\(\lambda = 3\) (alg. mult. 2)

eigenvectors:
\[
(1, 1)^T
\]

only eigenvector
up to scale

\[\rightarrow\] not diagonalizable.
More Examples

Diagonalize if possible.

\[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
a & b \\
b & a
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{pmatrix}
\]
Poll

Which are true?
1. if A is diagonalizable then A^2 is
2. if A is diagonalizable then A^{-1} is
3. if A^2 is diagonalizable then A is
4. if A is diagonalizable and B is similar to A then B is

1. $A = CDC^{-1} \implies A^2 = CD^2C^{-1}$
2. $A^{-1} = CD^{-1}C^{-1}$ as long as 0 not an eigenval.
3. $A^2 = CDC^{-1} \implies A = "CD^{1/2}C^{-1}"

4. $A = CDC^{-1}$ $B = PAP^{-1}$
 $\implies B = PCDC^{-1}P^{-1}$
 $= QDQ^{-1}$ $Q = PC$
Distinct Eigenvalues

Fact. If A has n distinct eigenvalues, then A is diagonalizable.

Why?

n distinct eigenvalues

\Rightarrow n lin ind eigenvectors.
Non-Distinct Eigenvalues

Theorem. Suppose

- $A = n \times n$, has eigenvalues $\lambda_1, \ldots, \lambda_k$
- a_i = algebraic multiplicity of λ_i
- d_i = dimension of λ_i eigenspace ("geometric multiplicity")

Then

1. $d_i \leq a_i$ for all i \textcolor{red}{actually, } 1 \leq d_i \leq a_i$
2. A is diagonalizable $\iff \Sigma d_i = n$
 ($\iff \Sigma a_i = n$ and $d_i = a_i$ for all i)
Example

Use your diagonalization of \[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
\] to find a formula for the \(n^{th}\) Fibonacci number.
Application: Social Networks

Consider the social network below.

- We want to find communities, say, a group of people so there is a direct path connecting any two.
- Make a matrix, M, whose ij-entry is the number of arrows from i to j.
- Then the ij entry of M^2 is the number of paths of length 2 to i to j.
 Why?
- Similar for M^3, etc.
- So the ij entry of $M + M^2 + \cdots M^k$ is the number of paths of length at most k. We look for positive minors.

The leading eigenvalue is a measure of how connected the network is.
Application: Business

Say your car rental company has 3 locations. Make a matrix M whose ij entry is the probability that a car at location i ends at location j. For example,

$$M = \begin{pmatrix} .3 & .4 & .5 \\ .3 & .4 & .3 \\ .4 & .2 & .2 \end{pmatrix}$$

Note the columns sum to 1. The eigenvector with eigenvalue 1 is the steady-state. Any other vector gets pulled to this state. Applying powers of M gives the state after some number of iterations.