
Section 3.2

Properties of Determinants



Where are we?

Last time, we also gave a formula for the determinant and said that the
absolute value of the determinant of A is the volume of the parallelepiped
spanned by the columns of A.

So: A is invertible , det(A) 6= 0

Remaining questions:

• Where do the formulas for determinant come from?

• Why do the formulas tell us about volume?

• How can we compute determinants more e�ciently?



Outline

• A definition of determinant in terms of row operations

• Using the definition of determinant to compute the determinant

• Determinants of products: det(AB)

• Determinants and linear transformations



A definition of determinant in terms of row operations

A determinant is a function

det : {matrices} ! R

with the following properties:

1. det(In) = 1

2. If we do a row replacement on a matrix, the determinant is unchanged

3. If we swap two rows of a matrix, the determinant scales by �1

4. If we scale a row of a matrix by k, the determinant scales by k

Why would we think of this? Answer: This is exactly how volume works.

Try it out for 2⇥ 2 matrices:



A definition of determinant in terms of row operations

A determinant is a function

det : {matrices} ! R

with the following properties:

1. det(In) = 1

2. If we do a row replacement on a matrix, the determinant is unchanged

3. If we swap two rows of a matrix, the determinant scales by �1

4. If we scale a row of a matrix by k, the determinant scales by k

Problem. Just using these rules, compute the determinants:
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Determinants and invertibility

Fact. If A has a zero row, then det(A) = 0.

Why? Hint: use a row scale by 0.

Theorem. A is invertible , det(A) 6= 0

Why?

If A is invertible, we can row reduce it to the identity, which has determinant 1.
All the row operations change the determinant by 1, �1, or k 6= 0. Therefore
det(A) 6= 0.

If A is not invertible, we can row reduce it to a matrix with a zero row. By the
same logic, det(A) = 0.



Computing determinants
...using the definition in terms of row operations
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A Mathematical Conundrum

We have this nice definition of a determinant, and it gives us a fast way to
compute determinants (much fast than cofactor expansion for a large matrix),
but...

We don’t know that such a determinant function exists?

More specifically, we haven’t ruled out the possibility that two di↵erent row
reductions might gives us two di↵erent answers for the determinant.

Don’t worry! It will all be okay.





Properties of the determinant

Let det : {matrices} ! R be a function with the above four properties.

Fact 1. There is such a function det and it is unique.

Fact 2. A is invertible , det(A) 6= 0.

Fact 3. If we row reduce A without row scaling then

det(A) = (�1)

swaps

(product of diagonal entries of REF).

Fact 4. The function can be computed by any of the 2n cofactor expansions.

Fact 5. det(AB) = det(A) det(B)

Fact 6. | det(A)| is the volume of the parallelepiped spanned by the cols of A.

If you want the proofs, see the course web site. Actually Fact 1 is the hardest!



Powers

Fact 5. det(AB) = det(A) det(B)

Use this fact to compute
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Powers

Suppose we know A

5 is invertible. Is A invertible?

1. yes

2. no

3. maybe

Poll



Determinants and linear transformations

Fact 7. If S is some subset of Rn, then vol(TA(S)) = | det(A)| · vol(S).

This works even if S is curvy, like a circle or an ellipse, or:

Why? First check that it works for little squares/cubes. Then: Calculus!


