Chapter 2

Review
Chapter 2 Review
Matrix Multiplication and Inverses

Products
\[AB \neq BA \]
\[T_{AB} = T_A \circ T_B \]

Inverses
- if \(AB = BA = I \), then \(B = A^{-1} \)
- \(T_A^{-1} = T_{A^{-1}} \)
- \(Ax = b \Leftrightarrow x = A^{-1}b \)
- Find \(A^{-1} \) by row reducing \((A|I)\) to get \((I|A^{-1})\)
- Another perspective: \(E_k E_{k-1} \cdots E_2 E_1 A = I \), where each \(E_i \) is an elementary matrix. This implies that \(E_k E_{k-1} \cdots E_2 E_1 = A^{-1} \).
Chapter 2 Review
Invertible Matrix Theorem

Let A be an $n \times n$ matrix. The following are equivalent:

- A is invertible
- A can be reduced to I
- A has n pivots
- $\text{Nul}(A) = \{0\}$
- T_A is one-to-one
- T_A is onto
- $Ax = b$ is consistent for all b
- $\dim \text{Col}(A) = n$

etc ...
Let $A = LU$, where L is lower triangular, U is in echelon form.

- Easy to solve for many b.
- Algorithm
 - Step 1. Solve $Ly = b$
 - Step 2. Solve $Ux = y$
- To find L and U, row reduce A to echelon form to obtain U, then use negative of row operations to obtain L. Be careful:
 - go column by column
 - only use lower row replacement
Chapter 2 Review

Subspaces

- A **subspace** is a non-empty subset of \mathbb{R}^n closed under linear combinations.
- Two important subspaces are
 - $\text{Col}(A) = \text{span of columns of } A$.
 - $\text{Nul}(A) = \text{(solutions to } Ax = 0)$.
- A **basis** for a subspace W is a set of lin. ind. vectors that spans W.
 - To find the B–coords of u, solve $Bx = u$
- The **dimension** of a subspace is the number of elements in the basis.
- Use row reduction to find a basis for $\text{Col}(A)$ or $\text{Nul}(A)$.
 - Pivot columns are used to identify the basis for $\text{Col}(A)$.
 - Parametric form is used to identify the basis for $\text{Nul}(A)$.

Note. $\text{Col}(A) = \text{range of } T_A$
Chapter 2 Review

Rank Theorem Let A be an $m \times n$ matrix, then

$$\dim \text{Col}(A) + \dim \text{Nul}(A) = n.$$

Basis Theorem

Suppose V is a k-dimensional subspace of \mathbb{R}^n. Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.
Midterm 2

Piazza Questions
Matrix Algebra

Solve for X:

$$(A - AX)^{-1} = X^{-1}B$$
Matrix Algebra

True/False.

\[(A + B)^2 = A^2 + 2AB = B^2\]

If \(A\) and \(B\) are invertible then \(A + B\) is invertible.

If \(Ax = 0\) has the trivial solution then \(A\) is invertible.
Elementary Matrices

Find a product of elementary matrices that equals

\[
\begin{pmatrix}
2 & 1 \\
1 & 1 \\
\end{pmatrix}
\]
Areas and Determinants

Find the area of the triangle in \mathbb{R}^2 with vertices $(-5, 3)$, $(0, 5)$, and $(47, 24)$.

Let B be a ball of radius 1 in \mathbb{R}^3. The volume of B is $4\pi/3$. Let

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 9 \\ 0 & 0 & 2 \end{pmatrix}$$

What is the volume of $T_A(B)$?
Inverses and Determinants

Find the matrix of cofactors for

\[A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \]

What is \(A^{-1} \)?
Properties of Determinants

Suppose that A is a 5×5 matrix with determinant 3.

Is A invertible?

What is $\det(-A)$?

What is $\det(A^{-1})$?

What is $\det A^T$?

What is the determinant of the matrix obtained from A by replacing the first row with twice the first row plus the second row?
Bases and Coordinates

Let
\[b_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \text{ and } b_2 = \begin{pmatrix} -2 \\ 5 \end{pmatrix} \]

and \(B = \{b_1, b_2\} \). Explain why \(B \) is a basis for \(\mathbb{R}^2 \).

What is \([e_1]_B\)? In other words, what are the \(B \)-coordinates of \(e_1 = (1, 0) \)?
Computing Determinants

Compute:

$$\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$