Name _____

Mathematics 1553 Midterm 2 Prof. Margalit Section D1/Isabella D2/Kyle D3/Kalen D4/Sidhanth (circle one!) 6 March 2020 BLANK PAGE

1. Answer the following questions. No justification for your answer is required.

• Let V be the set of solutions to x + y + z = 0 in \mathbb{R}^3 . Is V a subspace of \mathbb{R}^3 ?

YES NO

• Say that V is a plane in \mathbb{R}^3 , that v and w are two vectors in V, and that neither v or w is a multiple of the other. Must it be true that $\{v, w\}$ is a basis for V?

YES NO

• If A is an invertible $n \times n$ matrix, then must it be true that the columns of A form a basis for \mathbb{R}^n ?

YES NO

• Suppose A is a 4×4 matrix and $Ax = e_1$ has infinitely many solutions. Is A invertible?

YES NO

• Suppose that A is a 2×3 matrix and that the column space for A is a plane. Is it possible for Ax = b to have infinitely many solutions?

YES NO

- 2. Answer the following questions. No justification for your answer is required.
- Complete the definition: Vectors v_1, \ldots, v_k form a basis for a subspace V of \mathbb{R}^n if...

• Let V be the subset of \mathbb{R}^2 given by the first quadrant. In other words:

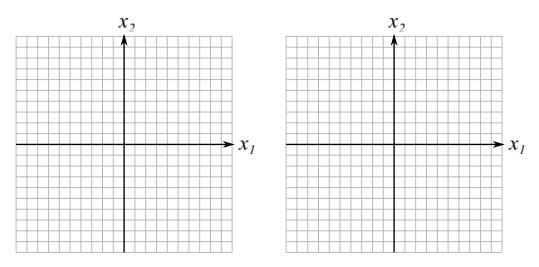
$$V = \left\{ \left(\begin{array}{c} a \\ b \end{array} \right) \text{ in } \mathbb{R}^2 \mid a \ge 0 \text{ and } b \ge 0 \right\}$$

Which parts of the definition of a subspace are satisfied by V? Circle all that apply.

- (a) the zero vector is in V
- (b) if v and w are in V then v + w is in V
- (c) if v is in V and c is a real number then cv is in V
- (d) none of the above
- Solve the following equation for X. Assume that all matrices that arise are invertible.

$$X + AX = B$$

• Consider the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. On the *left-hand side*, draw the null space of A. On the *right-hand side* draw the column space of A.



3. Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation given by clockwise rotation by $\pi/4$ and let $U : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the formula

$$U\left(\begin{array}{c}x\\y\\z\end{array}\right) = \left(\begin{array}{c}z\\x-y\end{array}\right)$$

What is the standard matrix for T?

What is the standard matrix for U?

What is the range of U?

Which of the following two compositions makes sense? $T \circ U \qquad U \circ T$

Write down the standard matrix for the composition you chose.

4. Consider the following matrix A and its reduced row echelon form:

$$A = \begin{pmatrix} 3 & 6 & -1 \\ 4 & 8 & -1 \\ 4 & 8 & -2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Let T be the matrix transformation T(v) = Av.

Find a basis for the null space of A.

Find a basis for column space of A.

Are there two different vectors v and w with T(v) = T(w) and $T(v) \neq 0$? YES NO If you answered yes, find such a v and w. If you answered no, explain why not.

5. Find the inverse of the following matrix.

$$\left(\begin{array}{rrrr} 3 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 4 \end{array}\right)$$

Find a matrix A so the domain of T(v) = Av is \mathbb{R}^3 and the range is the line y = 2x in \mathbb{R}^2 .

Find a 2×2 matrix A so that $A \neq I$ and so that $A^4 = I$. Hint: Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ so that $T \circ T \circ T \circ T$ is the identity.

EXTRA SPACE

Problem	Score
1	
2	
3	
4	
5	
Total	