Mathematics 1553
Midterm 2
Prof. Margalit

Section D1/Isabella D2/Kyle D3/Kalen D4/Sidhanth (circle one!)
6 March 2020
1. Answer the following questions. No justification for your answer is required:

- Let V be the set of solutions to $x + y + z = 0$ in \mathbb{R}^3. Is V a subspace of \mathbb{R}^3?

 YES NO

- Say that V is a plane in \mathbb{R}^3, that v and w are two vectors in V, and that neither v or w is a multiple of the other. Must it be true that $\{v, w\}$ is a basis for V?

 YES NO

- If A is an invertible $n \times n$ matrix, then must it be true that the columns of A form a basis for \mathbb{R}^n?

 YES NO

- Suppose A is a 4×4 matrix and $Ax = e_1$ has infinitely many solutions. Is A invertible?

 YES NO

- Suppose that A is a 2×3 matrix and that the column space for A is a plane. Is it possible for $Ax = b$ to have infinitely many solutions?

 YES NO
2. Answer the following questions. No justification for your answer is required.

- Complete the definition: **Vectors** v_1, \ldots, v_k **form a basis for a subspace** V of \mathbb{R}^n **if...**

 they are lin. ind. and they span V

- Let V be the subset of \mathbb{R}^2 given by the first quadrant. In other words:

 $$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \mid a \geq 0 \text{ and } b \geq 0 \right\}$$

Which parts of the definition of a subspace are satisfied by V? Circle all that apply.

- (a) the zero vector is in V
- (b) if v and w are in V then $v + w$ is in V
- (c) if v is in V and c is a real number then cv is in V
- (d) none of the above

- Solve the following equation for X. Assume that all matrices that arise are invertible.

 $$X + AX = B$$

 $$\sim (I + A)X = B \quad \sim X = (I + A)^{-1}B$$

- Consider the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. On the left-hand side, draw the null space of A. On the right-hand side, draw the column space of A.

![Graphs showing null space and column space](image-url)
3. Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation given by clockwise rotation by $\pi/4$ and let $U : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by the formula

$$
U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x - y \end{pmatrix}
$$

What is the standard matrix for T?

$$
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}
$$

What is the standard matrix for U?

$$
\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}
$$

What is the range of U?

\mathbb{R}^2

Which of the following two compositions makes sense? $T \circ U$ $U \circ T$

Write down the standard matrix for the composition you chose.

$$
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \end{pmatrix}
$$
4. Consider the following matrix A and its reduced row echelon form:

$$A = \begin{pmatrix} 3 & 6 & -1 \\ 4 & 8 & -1 \\ 4 & 8 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Let T be the matrix transformation $T(v) = Av$.

Find a basis for the null space of A.

$$\begin{cases} x + 2y = 0 \\ y = y \\ z = 0 \end{cases} \rightarrow \left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Find a basis for column space of A.

$$\left\{ \begin{pmatrix} 3 \\ 4 \\ 4 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \right\}$$

Are there two different vectors v and w with $T(v) = T(w)$ and $T(v) \neq 0$? \bigcirc Yes \bigcirc No

If you answered yes, find such a v and w. If you answered no, explain why not.

$$v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad w = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
5. Find the inverse of the following matrix.

\[
\begin{pmatrix}
3 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 4 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 4 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 4 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1-30 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & -4121 \\
0 & 1 & 1-30 \\
\end{pmatrix} \sim \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 1 \\
\end{pmatrix}
\]

Find a matrix \(A \) so the domain of \(T(v) = Av \) is \(\mathbb{R}^3 \) and the range is the line \(y = 2x \) in \(\mathbb{R}^2 \).

\[
\begin{pmatrix}
1 & 0 & 0 \\
2 & 0 & 0 \\
\end{pmatrix}
\]

Find a \(2 \times 2 \) matrix \(A \) so that \(A \neq I \) and so that \(A^4 = I \). Hint: Find a linear transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) so that \(T \circ T \circ T \circ T \) is the identity.

\[T = \text{rotation} \ 2\pi/4 \]

\[
\begin{pmatrix}
0 & -1 \\
1 & 0 \\
\end{pmatrix}
\]