Announcements Jan 22

- Midterm 1 on Feb 7
- WeBWorK due Thursday
- Quiz in studio on Friday
- My office hours Monday 3-4 and Wed 2-3 in Skiles 234
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel
Chapter 2
System of Linear Equations: Geometry
Section 2.1

Vectors
Outline

- Think of points in \mathbb{R}^n as vectors.
- Learn how to add vectors and multiply them by a scalar
- Understand the geometry of adding vectors and multiplying them by a scalar
- Understand linear combinations algebraically and geometrically
A **vector** is a matrix with one row or one column. We can think of a vector with \(n \) rows as:

- a point in \(\mathbb{R}^n \)
- an arrow in \(\mathbb{R}^n \)

To go from an arrow to a point in \(\mathbb{R}^n \), we subtract the tip of the arrow from the starting point. Note that there are many arrows representing the same vector.

Adding vectors / parallelogram rule ▶ Demo

Scaling vectors ▶ Demo

A **scalar** is just a real number. We use this term to indicate that we are scaling a vector by this number.
Linear Combinations

A linear combination of the vectors v_1, \ldots, v_k is any vector

$$c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$$

where c_1, \ldots, c_k are real numbers.

Let $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w?
Is there a vector in \mathbb{R}^2 that is not a linear combination of v and w?

- yes
- no
Linear Combinations

What are some linear combinations of $(1, 1)$?

What are some linear combinations of $(1, 1)$ and $(2, 2)$?

What are some linear combinations of $(0, 0)$?
Summary of Section 2.1

- A vector is a point/arrow in \mathbb{R}^n
- We can add/scale vectors algebraically & geometrically (parallelogram rule)
- A linear combination of vectors v_1, \ldots, v_k is a vector

$$c_1v_1 + \cdots + c_kv_k$$

where c_1, \ldots, c_k are real numbers.