Sections 3.1

Matrix Transformations

Section 3.1 Outline

· Learn to think of matrices as functions, called matrix transformations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Learn the associated terminology: domain, codomain, range
- Understand what certain matrices do to \mathbb{R}^n

From matrices to functions

Let A be an $m\times n$ matrix.

We define a function

 $T: \mathbb{R}^n \to \mathbb{R}^m$ T(v) = Av

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is called a matrix transformation.

The domain of T is \mathbb{R}^n .

The co-domain of T is \mathbb{R}^m .

The range of T is the set of outputs: Col(A)

This gives us a*nother* point of view of Ax = b

Example

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
, $u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$.

What is T(u)?

Find v in \mathbb{R}^2 so that T(v) = b

Find a vector in \mathbb{R}^3 that is not in the range of T.

(ロ)、(型)、(E)、(E)、 E) の(()

Square matrices

For a square matrix we can think of the associated matrix transformation

$$T:\mathbb{R}^n\to\mathbb{R}^n$$

as doing something to \mathbb{R}^n .

Example. The matrix transformation T for

$$\left(\begin{array}{rr} -1 & 0 \\ 0 & 1 \end{array}\right)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

What does T do to \mathbb{R}^2 ?

Square matrices

What does each matrix do to \mathbb{R}^2 ?

 $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ $\left(\begin{array}{cc}1&0\\0&0\end{array}\right)$ $\left(\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array}\right)$

What is the range in each case?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Poll

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Square matrices

What does each matrix do to \mathbb{R}^2 ?

Hint: if you can't see it all at once, see what happens to the x- and y-axes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Examples in \mathbb{R}^3

What does each matrix do to \mathbb{R}^3 ?

・ロト・日本・ヨト・ヨー うへの

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$
$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$
$$\left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by T(v) = Av. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\operatorname{Col}(A)$.
- If A is $n \times n$ then T does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ