Announcements Feb 19

• Midterm 2 on March 6
• WeBWorK 2.7+2.9, 3.1 due Thursday
• Mid-semester evaluation under Quizzes on Canvas (due today)
• My office hours Monday 3-4 and Wed 2-3 in Skiles 234
• Pop-up office hours Wed 11-11:30 this week in Skiles 234
• TA office hours in Skiles 230 (you can go to any of these!)
 ▶ Isabella Thu 2-3
 ▶ Kyle Thu 1-3
 ▶ Kalen Mon/Wed 1-1:50
 ▶ Sidhanth Tue 10:45-11:45

• PLUS sessions Mon/Wed 6-7 LLC West with Miguel
• Supplemental problems and practice exams on the master web site
Section 3.4
Matrix Multiplication
Section 3.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things
Function composition

Remember from calculus that if f and g are functions then the composition $f \circ g$ is a new function defined as follows:

$$f \circ g(x) = f(g(x))$$

In words: first apply g, then f.

Example: $f(x) = x^2$ and $g(x) = x + 1$.

Note that $f \circ g$ is usually different from $g \circ f$.
Composition of linear transformations

We can do the same thing with linear transformations \(T : \mathbb{R}^p \to \mathbb{R}^m \) and \(U : \mathbb{R}^n \to \mathbb{R}^p \) and make the composition \(T \circ U \).

Notice that both have an \(p \). Why?

What are the domain and codomain for \(T \circ U \)?

Natural question: What is the matrix for \(T \circ U \)?

Associative property: \((S \circ T) \circ U = S \circ (T \circ U) \)

Why?
Composition of linear transformations

Example. $T = \text{projection to } y\text{-axis}$ and $U = \text{reflection about } y = x$ in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

What about $U \circ T$?
Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the ijth entry.

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

$$(AB)_{ij} = r_i \cdot b_j$$

where r_i is the ith row of A, and b_j is the jth column of B.

Or: the jth column of AB is A times the jth column of B.

Multiply these matrices (both ways):

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}$$
Matrix Multiplication and Linear Transformations

As above, the composition \(T \circ U \) means: do \(U \) then do \(T \)

Fact. Suppose that \(A \) and \(B \) are the standard matrices for the linear transformations \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(U : \mathbb{R}^p \rightarrow \mathbb{R}^n \). The standard matrix for \(T \circ U \) is \(AB \).

Why?

\[
(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)
\]

So we need to check that \(A(Bv) = (AB)v \). Enough to do this for \(v = e_i \). In this case \(Bv \) is the \(i \)th column of \(B \). So the left-hand side is \(A \) times the \(i \)th column of \(B \). The right-hand side is the \(i \)th column of \(AB \) which we already said was \(A \) times the \(i \)th column of \(B \). It works!
Matrix Multiplication and Linear Transformations

Fact. Suppose that A and B are the standard matrices for the linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$ and $U : \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB.

Example. $T =$ projection to y-axis and $U =$ reflection about $y = x$ in \mathbb{R}^2

What is the standard matrix for $T \circ U$?
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \(\mathbb{R}^3 \) that reflects through the \(xy \)-plane and then projects onto the \(yz \)-plane.
Discussion Question

Are there nonzero matrices A and B with $AB = 0$?

1. Yes
2. No
Properties of Matrix Multiplication

- \(A(BC) = (AB)C \)
- \(A(B + C) = AB + AC \)
- \((B + C)A = BA + CA \)
- \(r(AB) = (rA)B = A(rB) \)
- \((AB)^T = B^T A^T \)
- \(I_mA = A = AI_n \), where \(I_k \) is the \(k \times k \) identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- \(AB \) is not always equal to \(BA \)
- \(AB = AC \) does not mean that \(B = C \)
- \(AB = 0 \) does not mean that \(A \) or \(B \) is 0
Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

\[A + B = B + A \]

\[(A + B) + C = A + (B + C) \]

\[r(A + B) = rA + rB \]

\[(r + s)A = rA + sA \]

\[(rs)A = r(sA) \]

\[A + 0 = A \]

(We can define linear transformations \(T + U \) ad \(cT \), and so all of the above facts are also facts about linear transformations.)
Summary of Section 3.4

- **Composition**: \((T \circ U)(v) = T(U(v))\) \(\text{ (do } U \text{ then } T\)\)
- **Matrix multiplication**: \((AB)_{ij} = r_i \cdot b_j\)
- **Matrix multiplication**: the \(i\)th column of \(AB\) is \(A(b_i)\)
- Suppose that \(A\) and \(B\) are the standard matrices for the linear transformations \(T : \mathbb{R}^n \to \mathbb{R}^m\) and \(U : \mathbb{R}^p \to \mathbb{R}^n\). The standard matrix for \(T \circ U\) is \(AB\).
- **Warning**!
 - \(AB\) is not always equal to \(BA\)
 - \(AB = AC\) does not mean that \(B = C\)
 - \(AB = 0\) does not mean that \(A\) or \(B\) is 0