Section 3.6

The invertible matrix theorem
Section 3.6 Outline

- The invertible matrix theorem
The Invertible Matrix Theorem

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

1. A is invertible
2. T is invertible
3. The reduced row echelon form of A is I_n
4. A has n pivots
5. $Ax = 0$ has only 0 solution
6. $\text{Nul}(A) = \{0\}$
7. $\text{nullity}(A) = 0$
8. columns of A are linearly independent
9. columns of A form a basis for \mathbb{R}^n
10. T is one-to-one
11. $Ax = b$ is consistent for all b in \mathbb{R}^n
12. $Ax = b$ has a unique solution for all b in \mathbb{R}^n
13. columns of A span \mathbb{R}^n
14. $\text{Col}(A) = \mathbb{R}^n$
15. $\text{rank}(A) = n$
16. T is onto
17. A has a left inverse
18. A has a right inverse
The Invertible Matrix Theorem

There are two kinds of square matrices, invertible and non-invertible matrices.

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.

One way to think about the theorem is: there are lots of conditions equivalent to a matrix having a pivot in every row, and lots of conditions equivalent to a matrix having a pivot in every column, and when the matrix is a square, all of these many conditions become equivalent.
Example

Determine whether A is invertible. $A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}$

It isn't necessary to find the inverse. Instead, we may use the Invertible Matrix Theorem by checking whether we can row reduce to obtain three pivot columns, or three pivot positions.

\[
A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}
\]

There are three pivot positions, so A is invertible by the IMT (statement c).
The Invertible Matrix Theorem

Poll

Which are true? Why?

m) If A is invertible then the rows of A span \mathbb{R}^n

n) If $Ax = b$ has exactly one solution for all b in \mathbb{R}^n then A is row equivalent to the identity.

o) If A is invertible then A^2 is invertible

p) If A^2 is invertible then A is invertible
Some sample Yes/No questions

In all questions, suppose that A is an $n \times n$ matrix and that $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation.

(1) Suppose that the reduced row echelon form of A does not have any zero rows. Must it be true that $Ax = b$ is consistent for all b in \mathbb{R}^n?

 YES NO

(2) Suppose that T is one-to-one. Is it possible that the columns of A add up to zero?

 YES NO

(3) Suppose that $Ax = e_1$ is not consistent. Is it possible that T is onto?

 YES NO
Summary of Section 3.6

- Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

 (1) A is invertible
 (2) T is invertible
 (3) The reduced row echelon form of A is I_n
 (4) etc.