
Announcements Mar 9

• Midterm 3 on April 10

• WeBWorK on Chapter 4 due Thursday

• No quiz on Friday (next quiz Mar 27)

• My office hours Monday 3-4 and Wed 2-3 in Skiles 234

• TA office hours in Skiles 230 (you can go to any of these!)
I Isabella Thu 2-3
I Kyle Thu 1-3
I Kalen Mon/Wed 1-1:50
I Sidhanth Tue 10:45-11:45

• PLUS sessions Mon/Wed 6-7 LLC West with Miguel

• Supplemental problems and practice exams on the master web site



Where are we?

Remember:

Almost every engineering problem, no
matter how huge, can be reduced to lin-
ear algebra:

Ax = b or

Ax = λx

A few examples of the second: column buckling, control theory, image
compression, exploring for oil, materials, natural frequency (bridges and car
stereos), principal component analysis, Google, Netflix, and many more!

We have said most of what we are going to say about the first problem. We
now begin in earnest on the second problem.



A Question from Biology

In a population of rabbits...

• half of the new born rabbits survive their first year

• of those, half survive their second year

• the maximum life span is three years

• rabbits produce 0, 6, 8 rabbits in their first, second, and third years

If I know the population one year - think of it as a vector (f, s, t) - what is the
population the next year?

 0 6 0
1
2

0 1
0 1

2
0



Now choose some starting population vector u = (f, s, t) and choose some
number of years N . What is the new population after N years?

Anu

Demo

http://textbooks.math.gatech.edu/ila/demos/rabbits/book_demo.html


Chapter 5

Eigenvectors and eigenvalues



Section 5.1

Eigenvectors and eigenvalues



Eigenvectors and Eigenvalues

Suppose A is an n× n matrix and there is a v 6= 0 in Rn and λ in R so that

Av = λv

then v is called an eigenvector for A, and λ is the corresponding eigenvalue.

eigen = characteristic

So Av points in the same direction as v.

This the the most important definition in the course.

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=2,1:1,1&nospace&vers=142dea


Eigenvectors and Eigenvalues

Suppose A is an n× n matrix and there is a v 6= 0 in Rn and λ in R so that

Av = λv

then v is called an eigenvector for A, and λ is the corresponding eigenvalue.

Can you find any eigenvectors/eigenvalues for the following matrix?

A =

(
2 0
0 3

)

What happens when you apply larger and larger powers of A to a vector?



Eigenvectors and Eigenvalues
Examples

A =

 0 6 8
1/2 0 0

0 1/2 0

 , v =

 32
8
2

 , λ = 2

A =

(
2 2
−4 8

)
, v =

(
1
1

)
, λ = 4

How do you check?



Eigenvectors and Eigenvalues
Confirming eigenvectors

Which of

(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
2
1

)
,

(
0
0

)
are eigenvectors of (

1 1
1 1

)
?

What are the eigenvalues?

Poll



Eigenvectors and Eigenvalues
Confirming eigenvalues

Confirm that λ = 3 is an eigenvalue of A =

(
2 −4
−1 −1

)
.

We need a non-zero vector v that satisfies Av = 3v, or

Av − 3v = 0

Av − 3Iv = 0

(A− 3I)v = 0(
−1 −4
−1 −4

)
v = 0

Row reduction yields

(
1 4
0 0

)
v = 0, which has infinitely many solutions.

So there are non-zero v that satisfy Av = 3v, which means that λ = 3 is an
eigenvalue of A.

So: λ is an eigenvalue if and only if (A− λI)v = 0 has a nontrivial solution, or
the matrix (A− λI) is not invertible, or det(A− λI) = 0.

What is a general procedure for finding eigenvalues?

λ is an eigenvalue of A ⇔ A− λI is not invertible.



Eigenspaces

Let A be an n× n matrix. The set of eigenvectors for a given eigenvalue λ of
A (plus the zero vector) is a subspace of Rn called the λ-eigenspace of A.

Why is this a subspace?

Fact. λ-eigenspace for A = Nul(A− λI)

Example. Find the eigenspaces for λ = 2 and λ = −1 and sketch.(
5 −6
3 −4

)



Eigenspaces
Bases

Find a basis for the 2–eigenspace: 4 −1 6
2 1 6
2 −1 8





Eigenvalues
And invertibility

Fact. A invertible ⇔ 0 is not an eigenvalue of A

Why?



Eigenvalues
Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Why?

Important! You can not find the eigenvalues by row reducing first! After you
find the eigenvalues, you row reduce A− λI to find the eigenspaces. But once
you start row reducing the original matrix, you change the eigenvalues.



Eigenvalues
Distinct eigenvalues

Fact. If v1 . . . vk are distinct eigenvectors that correspond to distinct
eigenvalues λ1, . . . λk, then {v1, . . . , vk} are linearly independent.

Why?

Think about the case k = 2. If v1, v2 are linearly dependent we can’t
have different λ1 and λ2.

If k = 3, and λ1 = 1, λ2 = 2, there are no other eigenvectors in the v1v2 plane.
Any other eigenvector must be linearly independent.



Eigenvalues geometrically

If v is an eigenvector of A then that means v and Av are scalar multiples, i.e.
they lie on a line.

Without doing any calculations, find the eigenvectors and eigenvalues of the
matrices corresponding to the following linear transformations:

• Reflection about the line y = −x in R2

• Orthogonal projection onto the x-axis in R2

• Scaling of R2 by 3

• (Standard) shear of R2

• Orthogonal projection to the xy-plane in R3

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:-1,0&nospace&vers=142dea


Eigenvalues for rotations?

If v is an eigenvector of A then that means v and Av are scalar multiples, i.e.
they lie on a line.

What are the eigenvectors and eigenvalues for rotation of R2 by π/2
(counterclockwise)?

Demo

https://textbooks.math.gatech.edu/ila/demos/eigenspace.html?mat=0,-1:1,0&nospace&vers=142dea


Summary of Section 5.1

• If v 6= 0 and Av = λv then λ is an eigenvector of A with eigenvalue λ

• Given a matrix A and a vector v, we can check if v is an eigenvector for
A: just multiply

• Recipe: The λ-eigenspace of A is the solution to (A− λI)x = 0

• Fact. A invertible ⇔ 0 is not an eigenvalue of A

• Fact. If v1 . . . vk are distinct eigenvectors that correspond to distinct
eigenvalues λ1, . . . λk, then {v1, . . . , vk} are linearly independent.

• We can often see eigenvectors and eigenvalues without doing calculations



Review for Section 5.1

True or false: The zero vector is an eigenvector for every matrix.

What are the eigenvalues for a reflection about a line in R2?

How many different eigenvalues can there be for an n× n matrix?


