Section 6.2 Orthogonal complements

Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements

$$\begin{split} W &= \text{subspace of } \mathbb{R}^n \\ W^\perp &= \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \} \end{split}$$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

Facts.

- 1. W^{\perp} is a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. $\dim W + \dim W^{\perp} = n$
- 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
- 5. The intersection of W and W^{\perp} is $\{0\}$.

Finding them

Problem. Let $W=\mathrm{Span}\{(1,1,-1)\}.$ Find the equation of the plane $W^\perp.$

Finding them

Problem. Let $W=\mathrm{Span}\{(1,1,-1),(-1,2,1)\}.$ Find a system of equations describing the line $W^\perp.$

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Finding them

Problem. Let $W = \mathrm{Span}\{(1,1,-1),(-1,2,1)\}$. Find a system of equations describing the line W^{\perp} .

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Theorem. $A = m \times n$ matrix

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$

 $\mathsf{Geometry} \leftrightarrow \mathsf{Algebra}$

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^{\perp}}$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Why? Say that $w_1+w_1'=w_2+w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^{\perp} . Then $w_1-w_2=w_2'-w_1'$. But the former is in W and the latter is in W^{\perp} , so they must both be equal to 0.

→ Demo

▶ Demo

Next time: Find v_W and $v_{W^{\perp}}$.

Orthogonal Projections

Many applications, including:

Review of Section 6.2

What is the dimension of W^{\perp} if W is a line in \mathbb{R}^{10} ?

What is W^{\perp} if W is the line y = mx in \mathbb{R}^2 ?

If W is the x-axis in \mathbb{R}^2 , and v=(7,-3), write v as $v_W+v_{W^{\perp}}$.

Summary of Section 6.2

- $\bullet \ W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$
- Facts:
 - 1. W^{\perp} is a subspace of \mathbb{R}^n
 - 2. $(W^{\perp})^{\perp} = W$
 - 3. $\dim W + \dim W^{\perp} = n$
 - 4. If $W = \operatorname{Span}\{w_1, \dots, w_k\}$ then $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w_i \text{ for all } i\}$
 - 5. The intersection of W and W^{\perp} is $\{0\}$.
- To find W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find the null space.
- \bullet Every vector v can be written uniquely as $v=v_W+v_{W^\perp}$ with v_W in W and v_{W^\perp} in W^\perp