Section 6.2
Orthogonal complements
Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements
Orthogonal complements

\[W = \text{subspace of } \mathbb{R}^n \]
\[W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \} \]

Question. What is the orthogonal complement of a line in \(\mathbb{R}^3 \)?

Facts.

1. \(W^\perp \) is a subspace of \(\mathbb{R}^n \)
2. \((W^\perp)^\perp = W\)
3. \(\dim W + \dim W^\perp = n\)
4. If \(W = \text{Span}\{w_1, \ldots, w_k\} \) then \(W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \}\)
5. The intersection of \(W \) and \(W^\perp \) is \(\{0\} \).
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1)\}$. Find the equation of the plane W^\perp.
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^\perp.
Orthogonal complements
Finding them

Recipe. To find (basis for) W^\perp, find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^\perp.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A

Theorem. $A = m \times n$ matrix

$$(\text{Row}A)^\perp = \text{Nul} A$$

Geometry \leftrightarrow Algebra
Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n. Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^\perp}$$

where v_W is in W and v_{W^\perp} is in W^\perp.

Why? Say that $w_1 + w_1' = w_2 + w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^\perp. Then $w_1 - w_2 = w_2' - w_1'$. But the former is in W and the latter is in W^\perp, so they must both be equal to 0.

Next time: Find v_W and v_{W^\perp}.
Orthogonal Projections

Many applications, including:
Review of Section 6.2

What is the dimension of W^\perp if W is a line in \mathbb{R}^{10}?

What is W^\perp if W is the line $y = mx$ in \mathbb{R}^{2}?

If W is the x-axis in \mathbb{R}^{2}, and $v = (7, -3)$, write v as $v_{W} + v_{W}^\perp$.
Summary of Section 6.2

• $W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \}$

• Facts:
 1. W^\perp is a subspace of \mathbb{R}^n
 2. $(W^\perp)^\perp = W$
 3. $\dim W + \dim W^\perp = n$
 4. If $W = \text{Span}\{w_1, \ldots, w_k\}$ then $W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \}$
 5. The intersection of W and W^\perp is $\{0\}$.

• To find W^\perp, find a basis for W, make those vectors the rows of a matrix, and find the null space.

• Every vector v can be written uniquely as $v = v_W + v_W^\perp$ with v_W in W and v_W^\perp in W^\perp