## Announcements April 1

- Class participation (Piazza polls) is optional for the rest of the semester.
- We will use Blue Jeans Meetings for the rest of the semester.
- The new schedule is on the web page.
- Midterm 3 on April 17
- WeBWorK 5.1 due tomorrow: Thu April 2.
- Official quiz on Friday on Canvas on 4.1, 4.2, 4.3, 5.1.
   It will be open all day Friday, but there will be a time limit.
- My office hours Monday 3-4 and Wed 2-3 on Blue Jeans by appl
- TA office hours on Blue Jeans (you can go to any of these!)
  - ► Isabella Mon 11-12, Wed 11-12
  - Kyle Wed 3-5, Thu 1-3
  - Kalen Mon/Wed 1-2
  - Sidhanth Tue 10-12
- Supplemental problems and practice exams on the master web site

< ロ > < 同 > < E > < E > E の < C</p>

Counseling Center: http://counseling.gatech.edu



▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

## Characteristic polynomial

Recall:

stic polynomial
$$Av \in \lambda \vee$$
  
 $Av - \lambda Iv = 0$  $\lambda$  is an eigenvalue of  $A \iff A - \lambda I$  is not invertible

So to find eigenvalues of A we solve

$$\det(A - \lambda I) = 0$$

JQ P

The left hand side is a polynomial, the characteristic polynomial of A.

The roots of the characteristic polynomial are the eigenvalues of A.

#### The eigenrecipe

Say you are given an square matrix A.

Step 1. Find the eigenvalues of A by solving

$$\det(A - \lambda I) = 0$$



<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SQ (~

Step 2. For each eigenvalue  $\lambda_i$  the  $\lambda_i$ -eigenspace is the solution to

$$(A - \lambda_i I)x = 0$$

Last class Sec. 5.1 To find a basis, find the vector parametric solution, as usual.

### Characteristic polynomial

Find the characteristic polynomial and eigenvalues of

$$\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

$$det \begin{pmatrix} 5 - \lambda & 2 \\ 2 & 1 - \lambda \end{pmatrix} = (5 - \lambda)(1 - \lambda) - 4$$

$$= \lambda^{2} - (5\lambda + 5) - 4$$

$$= \lambda^{2} - (5\lambda + 5) - 4$$

$$= \lambda^{2} - (5\lambda + 1) - (5\lambda + 5) - 4$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

$$= (5 - \sqrt{3}(5 - 4) - (5\lambda + 5) - 4)$$

#### Characteristic polynomials, trace, and determinant

The trace of a matrix is the sum of the diagonal entries.

The characteristic polynomial of an  $n \times n$  matrix A is a polynomial with leading term  $(-1)^n$ , next term  $(-1)^{n-1}$ trace(A), and constant term det(A):

$$(-1)^n \lambda^n + (-1)^{n-1} \operatorname{trace}(A) \lambda^{n-1} + \dots + \det(A)$$

So for a  $2 \times 2$  matrix:

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A)$$

$$\begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \longrightarrow \lambda^2 - 6\lambda + 1$$

$$= 5 + 1$$

## Characteristic polynomials

 $3 \times 3$  matrices

Find the characteristic polynomial of the following matrix.

$$\bigwedge = \begin{pmatrix} 7 & 0 & 3 \\ -3 & 2 & -3 \\ -3 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

What are the eigenvalues? Hint: Don't multiply everything out!

$$det \begin{pmatrix} 1-\lambda & 0 & 3 \\ 3 & 2-\lambda & 3 \\ -3 & 0 & -1-\lambda \end{pmatrix} = (2-\lambda) det \begin{pmatrix} 7-\lambda & 3 \\ -3 & -1-\lambda \end{pmatrix}$$
$$= (2-\lambda)((1-\lambda)(-1-\lambda) + 9)$$
$$= (2-\lambda)(\chi^2 - (6\lambda + 2))$$

Characteristic polynomials  $(7-\lambda)det\binom{2-\lambda-3}{2-\lambda} + 3det\binom{-3}{4-2}$ 

Find the characteristic polynomial of the following matrix.

Answer: 
$$-\lambda^{3} + 9\lambda^{2} - 8\lambda$$
  
What are the eigenvalues?  $\lambda = 0$  b|c:  
 $-\lambda (\lambda^{2} - 9\lambda + 8)$  factor  
 $\lambda = 0$   
 $2$ 

イロト イヨト イヨト イヨト

₽

 $\checkmark \land \land \land$ 

## Characteristic polynomials

 $3\times3$  matrices

Find the characteristic polynomial of the rabbit population matrix.

$$\left(\begin{array}{ccc} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{array}\right)$$

 $-\lambda^3 + 3\lambda + 2$ 

Answer:

What are the eigenvalues?

- X=2

Hint: We already know one eigenvalue! Polynomial long division ~>>

$$(\lambda - 2)(-\lambda^2 - 2\lambda - 1)$$

Don't really need long division: the first and last terms of the quadratic are easy to find; can guess and check the other term.

Without the hint, could use the rational root theorem: any integer root of a polynomial with leading coefficient  $\pm 1$  divides the constant term.

# Eigenvalues

Triangular matrices

Fact. The eigenvalues of a triangular matrix are the diagonal entries.

Why?  

$$\begin{array}{c}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}$$

$$\begin{array}{c}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}$$

$$\begin{array}{c}
(1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}$$

$$\begin{array}{c}
(1 - \lambda & 2 & 3 \\
0 & 4 - \lambda & 5 \\
0 & 0 & 6 - \end{array}$$

$$= (1 - \lambda)(4 - \lambda)(6 - \lambda) \\
(4 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}$$

$$\begin{array}{c}
+ & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}$$

$$\begin{array}{c}
+ & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}$$

$$\begin{array}{c}
+ & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}$$

$$\begin{array}{c}
+ & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4
\end{array}$$

## Algebraic multiplicity

an  $n \times n$  matrix is at most n.

The algebraic multiplicity of an eigenvalue  $\lambda$  is its multiplicity as a root of the characteristic polynomial.

Example. Find the algebraic multiplicities of the eigenvalues for  $\chi = 0$  has  $\chi = 0$  has

Later. dim eigenspace < alg mult

Sar

#### Review of Section 5.2

True or false: every  $n \times n$  matrix has an eigenvalue.

True or false: every  $n \times n$  matrix has n distinct eigenvalues.

True or false: the nullity of  $A - \lambda I$  is the dimension of the  $\lambda$ -eigenspace.

What are the eigenvalues for the standard matrix for a reflection?

### Summary of Section 5.2

- The characteristic polynomial of A is  $det(A \lambda I)$
- The roots of the characteristic polynomial for A are the eigenvalues
- Techniques for  $3 \times 3$  matrices:
  - Don't multiply out if there is a common factor
  - If there is no constant term then factor out  $\lambda$
  - If the matrix is triangular, the eigenvalues are the diagonal entries

< ロ > < 同 > < E > < E > E の < C</p>

- Guess one eigenvalue using the rational root theorem, reverse engineer the rest (or use long division)
- Use the geometry to determine an eigenvalue
- Given an square matrix A:
  - The eigenvalues are the solutions to  $det(A \lambda I) = 0$
  - Each  $\lambda_i$ -eigenspace is the solution to  $(A \lambda_i I)x = 0$

Section 5.4 Diagonalization

## Section 5.4 Outline

- Diagonalization
- Using diagonalization to take powers
- Algebraic versus geometric dimension

#### We understand diagonal matrices

We completely understand what diagonal matrices do to  $\mathbb{R}^n$ . For example:

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 stretches by 2 in  
x - div  
by 3 in y-div

We have seen that it is useful to take powers of matrices: for instance in computing rabbit populations.

If A is diagonal, powers of A are easy to compute. For example:

$$\left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right)^{10} = \left(\begin{array}{cc} 2^{\prime \circ} & \mathcal{O} \\ \mathcal{O} & 3^{\prime \circ} \end{array}\right)$$

#### Powers of matrices that are similar to diagonal ones

What if A is not diagonal? Suppose want to understand the matrix

$$A = \left(\begin{array}{cc} 5/4 & 3/4\\ 3/4 & 5/4 \end{array}\right)$$

geometrically? Or take it's 10th power? What would we do?

What if I give you the following equality: \_\_\_\_\_\_eigenvalues

$$\begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1}$$

$$A = C \quad D \quad C^{-1}$$
This is called diagonalization.
$$eigenvectors \quad C \begin{pmatrix} 2^{100} & 0 \\ 0 & (1/2) \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1}$$
How does this help us understand A? Or find  $A^{10}$ ?
$$A^{2} = (C D C^{-1}) (C D C^{-1}) = C D^{2} C^{-1} \quad A^{100} = C D^{0} C^{-1}$$

#### Powers of matrices that are similar to diagonal ones

What if I give you the following equality:

$$\begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1}$$
$$A = C \qquad D \qquad C^{-1}$$

This is called diagonalization.



## Diagonalization

Suppose A is  $n \times n$ . We say that A is diagonalizable if we can write:  $A = CDC^{-1}$  D = diagonal

$$A = CDC^{-1} \qquad D = \mathsf{dia}$$

We say that A is similar to D.

How does this factorization of A help describe what A does to  $\mathbb{R}^n$ ? How does this help us take powers of A?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Understanding the rabbit example: since 2 is the largest eigenvalue, (almost) all other vectors get pulled towards that eigenvector. Compare with the example from the last slide.

# Diagonalization

The recipe

**Theorem.** A is diagonalizable  $\Leftrightarrow A$  has n linearly independent eigenvectors.

In this case



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?



Example

Diagonalize if possible.

$$\left(\begin{array}{cc} 3 & 1 \\ 0 & 3 \end{array}\right)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ○ ミ ○ ○ ○ ○

Example

Diagonalize if possible.

$$\left(\begin{array}{cc} 3/4 & 1/4 \\ 1/4 & 3/4 \end{array}\right)$$

► Demo

### More Examples

Diagonalize if possible.

$$\left(\begin{array}{rrrr}1 & 0 & 2\\0 & 1 & 0\\2 & 0 & 1\end{array}\right) \quad \left(\begin{array}{rrrr}2 & 0 & 0\\1 & 2 & 1\\-1 & 0 & 1\end{array}\right)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ○ ミ ○ ○ ○ ○

Poll



## **Distinct Eigenvalues**

Fact. If A has n distinct eigenvalues, then A is diagonalizable.

Why?

### Non-Distinct Eigenvalues

Theorem. Suppose

- $A = n \times n$ , has eigenvalues  $\lambda_1, \ldots, \lambda_k$
- $a_i = algebraic multiplicity of <math>\lambda_i$
- $d_i = \text{dimension of } \lambda_i \text{ eigenspace ("geometric multiplicity")}$ Then
  - 1.  $d_i \leq a_i$  for all i2. A is diagonalizable  $\Leftrightarrow \Sigma d_i = n$  $\Leftrightarrow \Sigma a_i = n$  and  $d_i = a_i$  for all i

So: if you find one eigenvalue where the geometric multiplicity is less than the algebraic multiplicity, the matrix is not diagonalizable.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

### Review of Section 5.4

True or false: If A is a  $3 \times 3$  matrix with eigenvalues 0, 1, and 2, then A is diagonalizable.

True or false: It is possible for an eigenspace to be 0-dimensional.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

### Summary of Section 5.4

- A is diagonalizable if  $A = CDC^{-1}$  where D is diagonal
- A diagonal matrix stretches along its eigenvectors by the eigenvalues, similar to a diagonal matrix
- If  $A = CDC^{-1}$  then  $A^k = CD^kC^{-1}$
- A is diagonalizable ⇔ A has n linearly independent eigenvectors ⇔ the sum of the geometric dimensions of the eigenspaces in n

• If A has n distinct eigenvalues it is diagonalizable