Announcements April 13

- Midterm 3 on Friday
- WeBWorK 5.5 & 5.6 due Thu Apr 16.
- Survey about on-line learning on Canvas...
- My office hours Monday 3-4, Wed 2-3, and by appointment
- TA office hours on Blue Jeans (you can go to any of these!)
 - Isabella Wed 11-12
 - Kyle Wed 3-5, Thu 1-3
 - Kalen Mon/Wed 1-2
 - Sidhanth Tue 10-12
- Supplemental problems & practice exams on master web site
- Counseling Center: http://counseling.gatech.edu
Chapter 6
Orthogonality
Section 6.1

Dot products and Orthogonality
Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can’t solve $Ax = b$? How can we solve it as closely as possible?

The answer relies on orthogonality.
Outline

- Dot products
- Length and distance
- Orthogonality
Dot product

Say \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) are vectors in \(\mathbb{R}^n \)

\[
\begin{align*}
 u \cdot v &= \sum_{i=1}^{n} u_i v_i \\
 &= u_1 v_1 + \cdots + u_n v_n \\
 &= u^T v
\end{align*}
\]

Example. Find \((1, 2, 3) \cdot (4, 5, 6)\).

\[
\begin{align*}
 &= 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 \\
 &= 4 + 10 + 18 \\
 &= 32
\end{align*}
\]
Dot product

Some properties of the dot product

- $u \cdot v = v \cdot u$
- $(u + v) \cdot w = u \cdot w + v \cdot w$
- $(cu) \cdot v = c(u \cdot v)$
- $u \cdot u \geq 0$
- $u \cdot u = 0 \iff u = 0$

$$\begin{pmatrix} -1, -2, -3 \end{pmatrix} \cdot \begin{pmatrix} -1, -2, -3 \end{pmatrix}$$

$$= (-1)^2 + (-2)^2 + (-3)^2 > 0$$
Length

Let v be a vector in \mathbb{R}^n

$$\|v\| = \sqrt{v \cdot v}$$

= length of v

Why? Pythagorean Theorem

Fact. $\|cv\| = |c| \cdot \|v\|$

v is a unit vector of $\|v\| = 1$

Problem. Find the unit vector in the direction of $(1, 2, 3, 4)$.
Distance

The distance between \(v \) and \(w \) is the length of \(v - w \) (or \(w - v \!).

Problem. Find the distance between \((1,1,1)\) and \((1,4,-3)\).

\[
\begin{align*}
v - w &= (0, -3, 4) \\
\|v - w\| &= 5 = \sqrt{0^2 + (-3)^2 + 4^2}
\end{align*}
\]
Orthogonality

Fact. $u \perp v \iff u \cdot v = 0$

Why? Pythagorean theorem again!

\[u \perp v \iff \|u\|^2 + \|v\|^2 = \|u - v\|^2 \]
\[\iff u \cdot u + v \cdot v = u \cdot u - 2u \cdot v + v \cdot v \]
\[\iff u \cdot v = 0 \]

Problem. Find a vector in \mathbb{R}^3 orthogonal to $(1, 2, 3)$.

$$\begin{align*}
(1, 2, 3) \cdot (1, 1, -1) & = 1 \cdot 1 + 2 \cdot 1 + 3 \cdot -1 \\
& = 0.
\end{align*}$$
Section 6.2
Orthogonal complements
Outline of Section 6.2

• Orthogonal complements
• Computing orthogonal complements
Orthogonal complements

$\mathbf{W} = \text{subspace of } \mathbb{R}^n$

$\mathbf{W}^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in \mathbf{W} \}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3?

Facts.

1. \mathbf{W}^\perp is a subspace of \mathbb{R}^n
2. $(\mathbf{W}^\perp)^\perp = \mathbf{W}$
3. $\dim \mathbf{W} + \dim \mathbf{W}^\perp = n$
4. If $\mathbf{W} = \text{Span}\{w_1, \ldots, w_k\}$ then $\mathbf{W}^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \}$
5. The intersection of \mathbf{W} and \mathbf{W}^\perp is $\{0\}$.
Orthogonal complements
Finding them

Problem. Let \(W = \text{Span}\{(1, 1, -1)\} \). Find the equation of the plane \(W^\perp \).

\[
W^\perp = \text{Nul}(1, 1, -1)
\]

Why?
\(V \) in \(\text{Nul}(1, 1, -1) \)
means \((1, 1, -1)(v_1, v_2, v_3) = 0\)

means \((1, 1, -1) \cdot v = 0\)

Equation of the plane
\[
(1, 1, -1)(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = 0
\]

\(x + y - z = 0 \)

Vect param form gives a basis
for \(W^\perp \)

\[
\{(1, 1, 0), (0, -1, 1)\}
\]
Orthogonal complements
Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^\perp. Also find a basis for W^\perp.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

Sys of eqns

\[x + y - z = 0 \]
\[-x + 2y + z = 0 \]

Basis

Vect. param. form

\[\rightarrow 1 \text{ vector} \]

orth. compl. of plane in \mathbb{R}^3 is a line.
Orthogonal complements

Finding them

Recipe. To find (basis for) W^\perp, find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A
Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n. Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^\perp}$$

where v_W is in W and v_{W^\perp} is in W^\perp.

Why? Say that $w_1 + w_1' = w_2 + w_2'$ where w_1 and w_2 are in W and w_1' and w_2' are in W^\perp. Then $w_1 - w_2 = w_2' - w_1'$. But the former is in W and the latter is in W^\perp, so they must both be equal to 0.

Next time: Find v_W and v_{W^\perp}.
Orthogonal Projections

Many applications, including:
Review of Section 6.2

What is the dimension of W^\perp if W is a line in \mathbb{R}^{10}?

What is W^\perp if W is the line $y = mx$ in \mathbb{R}^2?

If W is the x-axis in \mathbb{R}^2, and $v = (7, -3)$, write v as $v_W + v_{W^\perp}$.