## Announcements April 13

- Midterm 3 on Friday
- Ch. 4 & S • WeBWorK 5.5 & 5.6 due Thu Apr 16.
- Survey about on-line learning on Canvas...
- My office hours Monday 3-4, Wed 2-3, and by appointment
- TA office hours on Blue Jeans (you can go to any of these!)
  - Isabella Wed 11-12
  - Kyle Wed 3-5, Thu 1-3
  - Kalen Mon/Wed 1-2
  - Sidhanth Tue 10-12
- Supplemental problems & practice exams on master web site

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Counseling Center: http://counseling.gatech.edu Click

Chapter 6 Orthogonality

# Section 6.1 Dot products and Orthogonality

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

#### Where are we?

We have learned to solve Ax = b and  $Av = \lambda v$ .

We have one more main goal.

What if we can't solve Ax = b? How can we solve it as closely as possible?



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The answer relies on orthogonality.

# Outline

- Dot products
- Length and distance

• Orthogonality

Dot product

Say  $u = (u_1, \ldots, u_n)$  and  $v = (v_1, \ldots, v_n)$  are vectors in  $\mathbb{R}^n$ 

$$u \cdot v = \sum_{i=1}^{n} u_i v_i$$
$$= u_1 v_1 + \dots + u_n v_n$$
$$= u^T v$$

*Example.* Find  $(1, 2, 3) \cdot (4, 5, 6)$ .

$$= 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32$$

$$(1 \quad 2 \quad 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = (32)$$

#### Dot product

Some properties of the dot product

 $\cdot w$ 

• 
$$u \cdot v = v \cdot u$$
  
•  $(u + v) \cdot w = u \cdot w + v$   
•  $(cu) \cdot v = c(u \cdot v)$   
•  $u \cdot u \ge 0$   
•  $u \cdot u = 0 \Leftrightarrow u = 0$ 

$$(-1, -2, -3) \cdot (-1, -2, -3)$$

$$= (-1)^{2} + (-2)^{2} + (-3)^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2} = 70^{2}$$

## Length



Why? Pythagorean Theorem

Fact.  $||cv|| = |c| \cdot ||v||$ 

v is a unit vector of ||v|| = 1



Problem. Find the unit vector in the direction of (1, 2, 3, 4).

 $L_{s} Length = 1^{2} + 2^{2} + 3^{2} + 4^{2}$  $= 1 + 4^{2} + 9 + 16$ 11-130 V/130 is a unit vector = 130 (1/30, 2/130, 3/130, 4/130)

#### Distance



$$V - W = (0, -3, 4)$$
  
 $||V - W|| = 5 = \sqrt{0^2 + -3^2 + 4^2}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Orthogonality

Fact.  $u \perp v \Leftrightarrow u \cdot v = 0$ 

Why? Pythagorean theorem again!

V-V

orthog

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

U

= [.] +2.] +3.-]

()

Problem. Find a vector in  $\mathbb{R}^3$  orthogonal to (1, 2, 3). (1, 2, 3). (1, 2, 3). (1, 1, -1)

1.2.3)

# Section 6.2 Orthogonal complements

## Outline of Section 6.2

- Orthogonal complements
- Computing orthogonal complements

$$W = \begin{array}{c} \text{subspace of } \mathbb{R}^n \\ W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\} \end{array}$$

Question. What is the orthogonal complement of a line in  $\mathbb{R}^3$ ?



▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ○○

Finding them

Problem. Let  $W = \text{Span}\{(1, 1, -1)\}$ . Find the equation of the plane  $W^{\perp}$ .

Finding them

Problem. Let  $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$ . Find a system of equations describing the line  $W^{\perp}$ . Also find a basis for  $W^{\perp}$ .

$$A = \begin{pmatrix} | | - | \\ -| 2 \rangle \end{pmatrix}$$



$$x + y - z = 0$$
  
-x + 2y + z = 0

Finding them

**Recipe.** To find (basis for)  $W^{\perp}$ , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Why?  $Ax = 0 \Leftrightarrow x$  is orthogonal to each row of A

algebra => geometry

#### Orthogonal decomposition

Fact. Say W is a subspace of  $\mathbb{R}^n$ . Then any vector v in  $\mathbb{R}^n$  can be written uniquely as

 $v = v_W + v_{W^{\perp}}$ 

where  $v_W$  is in W and  $v_{W^{\perp}}$  is in  $W^{\perp}$ .



#### **Orthogonal Projections**

Many applications, including:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Review of Section 6.2

What is the dimension of  $W^{\perp}$  if W is a line in  $\mathbb{R}^{10}$ ?

What is  $W^{\perp}$  if W is the line y = mx in  $\mathbb{R}^2$ ?

If W is the x-axis in  $\mathbb{R}^2$ , and v = (7, -3), write v as  $v_W + v_{W^{\perp}}$ .

