Announcements April 15

• Midterm 3 on Friday

• WeBWorK 5.5 & 5.6 due Thu Apr 16.

• My office hours Monday 3-4, Wed 2-3, and by appointment

• See Canvas for review sessions...

• TA office hours on Blue Jeans (you can go to any of these!)
 ▶ Isabella Wed 11-12
 ▶ Kyle Wed 3-5, Thu 1-3
 ▶ Kalen Mon/Wed 1-2
 ▶ Sidhanth Tue 10-12

• Supplemental problems & practice exams on master web site

• Counseling Center: http://counseling.gatech.edu
Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can’t solve $Ax = b$? How can we solve it as closely as possible?

The answer relies on orthogonality.
Section 6.2
Orthogonal complements
Orthogonal complements

\[W = \text{subspace of } \mathbb{R}^n \]
\[W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w \text{ for all } w \in W \} \]

Question. What is the orthogonal complement of a line in \(\mathbb{R}^3 \)?

Facts.
1. \(W^\perp \) is a subspace of \(\mathbb{R}^n \)
2. \((W^\perp)^\perp = W\)
3. \(\dim W + \dim W^\perp = n\)
4. If \(W = \text{Span}\{w_1, \ldots, w_k\} \) then
 \[W^\perp = \{ v \in \mathbb{R}^n \mid v \perp w_i \text{ for all } i \} \]
5. The intersection of \(W \) and \(W^\perp \) is \{0\}.

Plane in \(\mathbb{R}^3 \) & vice versa
Orthogonal complements
Finding them

Problem. Let \(W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\} \). Find a system of equations describing the line \(W^\perp \). And find basis.

\[W^\perp = \text{Null} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \]

\[
\begin{pmatrix}
1 & 1 & -1 \\
-1 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= 0
\]

means 1 \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \) in Null

2 \((x, y, z) \perp \) rows
Orthogonal complements
Finding them

Recipe. To find (basis for) W^\perp, find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

Why? $Ax = 0 \iff x$ is orthogonal to each row of A
Fact. Say W is a subspace of \mathbb{R}^n. Then any vector v in \mathbb{R}^n can be written uniquely as

$$v = v_W + v_{W^\perp}$$

where v_W is in W and v_{W^\perp} is in W^\perp.

Why? Say that $w_1 + w'_1 = w_2 + w'_2$ where w_1 and w_2 are in W and w'_1 and w'_2 are in W^\perp. Then $w_1 - w_2 = w'_2 - w'_1$. But the former is in W and the latter is in W^\perp, so they must both be equal to 0.

Next time: Find v_W and v_{W^\perp}.
Section 6.3
Orthogonal projection
Outline of Section 6.3

- Orthogonal projections and distance
- A formula for projecting onto any subspace
- A special formula for projecting onto a line
- Matrices for projections
- Properties of projections
Orthogonal Projections

Let v be a vector in \mathbb{R}^n and W a subspace of \mathbb{R}^n.

The **orthogonal projection** of v onto W the vector obtained by drawing a line segment from v to W that is perpendicular to W.

Fact. The following three things are all the same:

- The orthogonal projection of v onto W
- The vector v_W (the W-part of v)
- The closest vector in W to v
Orthogonal Projections

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n, the equation

$$A^T Ax = A^T v$$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

\[\text{proj of } v \text{ to } W = v_W = A (\text{any soln to } A^T Ax = A^T v) \]

If $W = \text{Span}\{ (\frac{1}{2}, \frac{3}{4}) \}$, make $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

$A^T = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

or: rows of A^T are...cols of A

or: cols of A^T are rows of A

ij entry of A^T is the...ji entry of A
Orthogonal Projections

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n, the equation
\[
A^T A x = A^T v
\]
is consistent and the orthogonal projection v_W is equal to $A x$ where x is any solution.

Why? Choose \hat{x} so that $A \hat{x} = v_W$. We know $v - v_W = v - A \hat{x}$ is in $W^\perp = \text{Nul}(A^T)$ and so
\[
0 = A^T (v - A \hat{x}) = A^T v - A^T A \hat{x}
\]
\[\Rightarrow A^T A \hat{x} = A^T v\]
Orthogonal Projections

Theorem. Let \(W = \text{Col}(A) \). For any vector \(v \) in \(\mathbb{R}^n \), the equation

\[
A^T Ax = A^T v
\]

is consistent and the orthogonal projection \(v_W \) is equal to \(Ax \) where \(x \) is any solution.

What does the theorem give when \(W = \text{Span}\{u\} \) is a line?

\[
A = u
\]

\[
A^T A = u^T u = u \cdot u = ||u||^2
\]

\[
A^T v = u^T v = u \cdot v
\]

So we solve \((u \cdot u)x = u \cdot v \) multiply by \(A \)

Solve: \(x = \frac{u \cdot v}{u \cdot u} \) Multiply by \(A \):
Orthogonal Projection onto a line

Special case. Let $L = \text{Span}\{u\}$. For any vector v in \mathbb{R}^n we have:

$$v_L = \frac{u \cdot v}{u \cdot u} u$$

Find v_L and $v_{L\perp}$ if $v = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ and $u = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

$U \cdot V = U^TV$

$W = L = \text{Span}\{u\}$

$V_L = \frac{u \cdot v}{u \cdot u} u = \frac{-2}{3} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ -2/3 \end{pmatrix}$

$V_{L\perp} = \begin{pmatrix} -2 \\ -3 \\ -2 \end{pmatrix} - \begin{pmatrix} 2/3 \\ -2/3 \\ -2/3 \end{pmatrix} = \ldots$
Orthogonal Projections

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n, the equation

$$A^T Ax = A^T v$$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

Example. Find v_W if $v = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$, $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$

Steps. Find $A^T A$ and $A^T v$, then solve for x, then compute Ax.

Question. How far is v from W?
Example. Find v_W if $v = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$, $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$

Steps. Find $A^T A$ and $A^T v$, then solve for x, then compute Ax.

$A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

$A^T b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$

Solve $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 11 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 2 \\ 11 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 2 \\ 11 \end{pmatrix}$

$\rightarrow \begin{pmatrix} 0 & 1 & -3 \\ 2 & 0 & -12 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 11 \\ 2 & 0 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \end{pmatrix}$

$\rightarrow x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Question. How far is v from W?

$\Vert v_W \Vert = \Vert v - v_W \Vert = \Vert \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} - \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix} \Vert = \Vert \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \Vert = \sqrt{(-1)^2 + 1^2 + 1^2} = \sqrt{3}$
Orthogonal Projections

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n, the equation

$$A^T Ax = A^T v$$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

Special case. If the columns of A are independent then $A^T A$ is invertible, and so

$$v_W = A(A^T A)^{-1} A^T v.$$

Why? The x we find tells us which linear combination of the columns of A gives us v_W. If the columns of A are independent, there’s only one linear combination.
Matrices for projections

Fact. If the columns of \(A \) are independent and \(W = \text{Col}(A) \) and \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) is orthogonal projection onto \(W \) then the standard matrix for \(T \) is:

\[
A(A^T A)^{-1} A^T.
\]

Why?

Example. Find the standard matrix for orthogonal projection of \(\mathbb{R}^3 \) onto \(W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} \)
Summary of Section 6.3

- The orthogonal projection of v onto W is v_W.
- v_W is the closest point in W to v.
- The distance from v to W is $\|v_{W^\perp}\|$.
- **Theorem.** Let $W = \text{Col}(A)$. For any v, the equation $A^T Ax = A^T v$ is consistent and v_W is equal to Ax where x is any solution.
- **Special case.** If $L = \text{Span}\{u\}$ then $v_L = \frac{u \cdot v}{u \cdot u} u$.
- **Special case.** If the columns of A are independent then $A^T A$ is invertible, and so $v_W = A(A^T A)^{-1} A^T v$.
- When the columns of A are independent, the standard matrix for orthogonal projection to $\text{Col}(A)$ is $A(A^T A)^{-1} A^T$.
- Let W be a subspace of \mathbb{R}^n and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the function given by $T(v) = v_W$. Then
 - T is a linear transformation
 - etc.
- If P is the standard matrix then
 - The 1–eigenspace of P is W (unless $W = 0$)
 - etc.