Announcements April 15

- Midterm 3 on Friday 75 mins, 24 hrs.
- WeBWorK 5.5 & 5.6 due Thu Apr 16.
- My office hours Monday 3-4, Wed 2-3, and by appointment
- See Canvas for review sessions... $k_{\rm V}$
- TA office hours on Blue Jeans (you can go to any of these!)
 - Isabella Wed 11-12
 - ▶ Kyle Wed 3-5, Thu 1-3
 - ► Kalen Mon/Wed 1-2
 - Sidhanth Tue 10-12
- Supplemental problems & practice exams on master web site

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Counseling Center: http://counseling.gatech.edu Click

Where are we?

We have learned to solve Ax = b and $Av = \lambda v$.

We have one more main goal.

What if we can't solve Ax = b? How can we solve it as closely as possible?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The answer relies on orthogonality.

Section 6.2 Orthogonal complements

Orthogonal complements

 $W = \text{subspace of } \mathbb{R}^n$ $W^{\perp} = \{ v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W \}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ? plane in R³ Demo vice versa Facts is a subspace of \mathbb{R}^n Ś dim W dim W $\operatorname{Span}\{w_1,\ldots,w_k\}$ then 4. \mathbb{R}^n in \mathbb{R}^n $v \perp w_i$ for all i5. The intersection of W and W^{\perp} is $\{0\}$.

Orthogonal complements

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^{\perp} . And find basis.

$$W^{\perp} = \operatorname{Null} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

$$\frac{1}{2} \frac{1}{2} = 0$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2$$

Orthogonal complements

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

▲□▶ ▲□▶ ▲ □▶ ★ □▶ □ のへで

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as Find Vw by orth. proj. Then Vw = V-Vw

$$v = v_W + v_{W^{\perp}}$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Section 6.3 Orthogonal projection

Outline of Section 6.3

- Orthogonal projections and distance
- A formula for projecting onto any subspace
- A special formula for projecting onto a line

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

- Matrices for projections
- Properties of projections

Let v be a vector in \mathbb{R}^n and W a subspace of \mathbb{R}^n .

The orthogonal projection of v onto W the vector obtained by drawing a line segment from v to W that is perpendicular to W.

SQA

Orthogonal Projections $\begin{pmatrix} \text{If } W = \text{Span}\left\{\binom{1}{2},\binom{3}{4}\right\} \\ \text{mate } A = \binom{1}{2} \\ \end{pmatrix}$

Theorem. Let $W = \operatorname{Col}(A)$. For any vector v in \mathbb{R}^n , the equation $A^T A x = A^T v$ $T = \operatorname{transpose}$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

proj. of
$$v = V_{W} = A(any solution A^{T}Ax = A^{T}v)$$

to W
 $A^{T} = \begin{pmatrix} i & 2 \\ 3 & 4 \end{pmatrix}$
 $A^{T} = \begin{pmatrix} i & 2 \\ 3 & 4 \end{pmatrix}$
 $A^{T} = \begin{pmatrix} i & 2 \\ 2 & 4 \end{pmatrix}$
or : rows of A^{T}
are...cols of A
is the... ji entry of A
or : cols of A^{T}
are rows of A^{T}

1

 \bigcirc

Theorem. Let $W = \operatorname{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$A^T A x = A^T v$$

Vwr

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ∽ ♀ ⊙

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

Why? Choose \hat{x} so that $A\hat{x} = v_W$. We know $v - v_W = v - A\hat{x}$ is in $W^{\perp} = \operatorname{Nul}(A^T)$ and so $0 = A^T(v - A\hat{x}) = A^Tv - A^TA\hat{x}$ $\rightsquigarrow A^TA\hat{x} = A^Tv$

Theorem. Let $W = \operatorname{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

 $(12) \binom{1}{2}$

n

 \mathbb{N}

$$A^T A x = A^T v$$

Span {u} is consistent and the orthogonal projection v_W is equal to Axwhere x is any solution.

What does the theorem give when $W = \text{Span}\{u\}$ is a line? - column vector $A^{T}A = u^{T}u = u \cdot u = ||u||^{2}$ $A^{T}v = u^{T}v = u \cdot V$ So we solve $(u \cdot u) \times = u \cdot v$ multiply by A Solve: $\chi = \frac{u \cdot v}{u \cdot u}$ Multiply by A: ロ ト ・ 日 ト ・ モ ト ・ э

Orthogonal Projection onto a line

Special case. Let $L = \text{Span}\{u\}$. For any vector v in \mathbb{R}^n we have:

$$v_{L} = \frac{u \cdot v}{u \cdot u} u$$

$$W = \sum = \text{Span}\{W\}$$

$$W = \sum = \text{Span}\{W\}$$
Find v_{L} and $v_{L^{\perp}}$ if $v = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ and $u = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.
$$V_{L} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$$

$$V_{L} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 2i_{3} \\ -i_{1}i_{3} \\ -i_{1}i_{3} \end{pmatrix}$$

$$V_{L^{\perp}} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} - \begin{pmatrix} 2i_{3} \\ -i_{3}i_{3} \\ -i_{3}i_{3} \end{pmatrix}$$

Theorem. Let $W = \operatorname{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$A^T A x = A^T v$$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

Example. Find
$$v_W$$
 if $v = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$, $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$

Steps. Find $A^T A$ and $A^T v$, then solve for x, then compute Ax.

Question. How far is v from W?

Orthogonal Projections ATAX = AT by the vector you are projecting

Example. Find
$$v_W$$
 if $v = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$, $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$

Steps. Find $A^T A$ and $A^T v$, then solve for x, then compute Ax. $A^{\mathsf{T}} A = \begin{pmatrix} 1 \circ 1 \\ 1 \circ 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 \circ 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad A^{\mathsf{T}} b = \begin{pmatrix} 1 \circ 1 \\ 1 \circ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \circ 1 \\ 1 \end{pmatrix}$ Solve $\begin{pmatrix} 2 \\ 12 \end{pmatrix} \times = \begin{pmatrix} 10 \\ 11 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 \\ 12 \end{pmatrix} \begin{pmatrix} 10 \\ 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 2 \\ 11 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 2 \\ 1 \\ 10 \end{pmatrix}$ $\longrightarrow \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & -3 & | & -12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & | & 1 \\ 0 & 1 & | & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \end{pmatrix}$ $\rightarrow \chi = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ Question. How far is v from W? $\begin{pmatrix} 7 \\ 4 \end{pmatrix} A \times = \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix}$ $\|\nabla_{W} \mathbf{r}\| = \|\nabla - \nabla_{W}\|$ M $= \left\| \begin{pmatrix} 6 \\ 5 \\ + \end{pmatrix} - \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix} \right\| \approx \left\| \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\| = \sqrt{(-1)^2 + 1^2 + 1^2}$

Theorem. Let $W = \operatorname{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$A^T A x = A^T v$$

is consistent and the orthogonal projection v_W is equal to Ax where x is any solution.

Special case. If the columns of A are independent then $A^T A$ is invertible, and so

$$v_W = \underline{A}(\underline{A^T}\underline{A})^{-1}\underline{A^T}\underline{v}.$$

Why? The x we find tells us which linear combination of the columns of A gives us v_W . If the columns of A are independent, there's only one linear combination.

Matrices for projections

Fact. If the columns of A are independent and W = Col(A) and $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is orthogonal projection onto W then the standard matrix for T is: $A(A^T A)^{-1} A^T.$ std matrix

Why?

Example. Find the standard matrix for orthogonal projection of \mathbb{R}^3 onto $W = \operatorname{Span} \left\{ \left(\begin{array}{c} 1\\ 0\\ 1 \end{array} \right), \left(\begin{array}{c} 1\\ 1\\ 0 \end{array} \right) \right\}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Summary of Section 6.3

- The orthogonal projection of v onto W is v_W
- v_W is the closest point in W to v.
- The distance from v to W is $||v_{W^{\perp}}||$.
- Theorem. Let $W = \operatorname{Col}(A)$. For any v, the equation $A^T A x = A^T v$ is consistent and v_W is equal to A x where x is any solution.
- Special case. If $L = \text{Span}\{u\}$ then $v_L = \frac{u \cdot v}{u \cdot u}u$
- Special case. If the columns of A are independent then $A^T A$ is invertible, and so $v_W = A(A^T A)^{-1}A^T v$
- When the columns of A are independent, the standard matrix for orthogonal projection to Col(A) is $A(A^TA)^{-1}A^T$
- Let W be a subspace of \mathbb{R}^n and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the function given by $T(v) = v_W$. Then
 - ► *T* is a linear transformation
 - etc.
- If P is the standard matrix then
 - The 1-eigenspace of P is W (unless W = 0)
 - etc.