Announcements April 15

- *•* Midterm 3 on Friday 75 mins, 24 hrs.
- *•* WeBWorK 5.5 & 5.6 due Thu Apr 16.
- My office hours Monday 3-4, Wed 2-3, and by appointment
- See Canvas for review sessions... K_γ|e
- TA office hours on Blue Jeans (you can go to any of these!)
	- \blacktriangleright Isabella Wed 11-12
	- \blacktriangleright Kyle Wed 3-5, Thu 1-3
	- \blacktriangleright Kalen Mon/Wed 1-2
	- \blacktriangleright Sidhanth Tue 10-12
- *•* Supplemental problems & practice exams on master web site

Counseling Center: http://counseling.gatech.edu PClick

Where are we?

We have learned to solve $Ax = b$ and $Av = \lambda v$.

We have one more main goal.

What if we can't solve $Ax = b$? How can we solve it as closely as possible?

Kロト K団 K K ミト K ヨ K ニョー YO Q O

The answer relies on orthogonality.

Section 6.2 Orthogonal complements

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Orthogonal complements

 $W =$ subspace of \mathbb{R}^n $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \perp w \text{ for all } w \text{ in } W\}$

Question. What is the orthogonal complement of a line in \mathbb{R}^3 ?

Plane in \mathbb{R}^3 ? ▶ Demo Demo vice versa **Facts** 1. *W*? is a subspace of R*ⁿ* 2. (*W*?)? = *W* W \dim $W \rightarrow W$ man $4.$ If $W \leq \text{Span}\{w_1, \ldots, w_k\}$ then
 $W \neq \emptyset$ in $\mathbb{R}^n \setminus \alpha \perp w_i$ for all $\alpha \perp w_i$ for all *i* 5. The intersection of \mathbf{W} and $W^{\mathbf{A}}$ is $\{0\}$.

Orthogonal complements

Finding them

Problem. Let $W = \text{Span}\{(1, 1, -1), (-1, 2, 1)\}$. Find a system of equations describing the line W^{\perp} . And find basis

$$
W^{\perp} = \text{Null} \begin{pmatrix} 1 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}
$$

$$
\left(\frac{1}{-1} \frac{1}{2} - \frac{1}{2}\right) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0
$$

means $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ in Null
 $\begin{pmatrix} 2 \\ x \\ y \end{pmatrix} (x, y, z) + rows$

Orthogonal complements

Finding them

Recipe. To find (basis for) W^{\perp} , find a basis for W, make those vectors the rows of a matrix, and find (a basis for) the null space.

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q Q

Why? $Ax = 0 \Leftrightarrow x$ is orthogonal to each row of A

Orthogonal decomposition

Fact. Say W is a subspace of \mathbb{R}^n . Then any vector v in \mathbb{R}^n can be written uniquely as Find v_w by orth. $proj$.
Then $v_w = v - v_w$

$$
v = v_W + v_{W^\perp}
$$

where v_W is in W and $v_{W^{\perp}}$ is in W^{\perp} .

Section 6.3 Orthogonal projection

Kロト K個 K K ミト K ミト ニミー の Q Q

Outline of Section 6.3

- *•* Orthogonal projections and distance
- *•* A formula for projecting onto any subspace
- *•* A special formula for projecting onto a line

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q Q

- *•* Matrices for projections
- Properties of projections

Let *v* be a vector in \mathbb{R}^n and W a subspace of \mathbb{R}^n .

The orthogonal projection of *v* onto *W* the vector obtained by drawing a line segment from *v* to *W* that is perpendicular to *W*.

Orthogonal Projections

Theorem Let $W = \text{Col}(A)$ For any vector y in Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$
A^T A x = A^T v \qquad \qquad \boxed{} \qquad \boxed{} = \text{transpose}
$$

ヽ

is consistent and the orthogonal projection *v^W* is equal to *Ax* where *x* is any solution.

$$
proj. of v = V_w = A \left(\text{any solnto } \frac{\pi}{4}x = \frac{\pi}{4} \right)
$$
\n
$$
A^T = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
proj. rows of A^T
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad if entry of A
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$
\n
$$
int 1 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}
$$

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$
A^T A x = A^T v
$$

 $V_{w^{\perp}}$

is consistent and the orthogonal projection *v^W* is equal to *Ax* where *x* is any solution.

Why? Choose \hat{x} so that $A\hat{x} = v_W$. We know $v - v_W = v - A\hat{x}$ is $\text{in } W^{\perp} \Longleftrightarrow \text{Null}(A^T)$ and so $0 = A^T(v - A\widehat{x}) = A^T v - A^T A \widehat{x}$ \rightsquigarrow $A^T A \hat{x} = A^T v$ Yw

 (12)

w

 \mathbf{u}

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$
A^T A x = A^T v
$$

is consistent and the orthogonal projection *v^W* is equal to *Ax* where *x* is any solution. $S_{\rho\alpha\eta}$ { u }

What does the theorem give when $W = \text{Span}\{u\}$ is a line? - column vector $A = u$ $\|U\|$ $A^{\prime}A = u^{\prime}u = u^{\prime}u$ $A^T v = u^T v = u \cdot v$ S o we solve $(u \cdot u) x = u \cdot v$
So we solve $(u \cdot u) x = u \cdot v$ multiplyby ^A $Solve: x = \frac{u \cdot v}{u \cdot u}$ Multiply by A: ₿

Orthogonal Projection onto a line

Special case. Let $L = \text{Span}\{u\}$. For any vector *v* in \mathbb{R}^n we have:

$$
v_L = \frac{u \cdot v}{u \cdot u} u
$$
\n
$$
W = L^2 S\rho a n \hat{v} u \hat{v}
$$
\n
$$
W = L^2 S\rho a n \hat{v} u
$$
\n
$$
V = \frac{1}{\rho} \left(\frac{-2}{-1} \right) \text{ and } u = \frac{-1}{\rho} \left(\frac{-1}{-1} \right)
$$
\n
$$
V = \frac{1}{\rho} \left(\frac{u \cdot v}{v \cdot u} \right) \text{ and } v = \frac{-2}{5} \left(\frac{-1}{1} \right) \text{ and } u = \frac{-1}{\rho} \left(\frac{1}{-2} \right)
$$
\n
$$
V = \left(\frac{u \cdot v}{-2} \right) \text{ and } v = \left(\frac{-1}{-2} \right) \text{ and } v = \left(\frac{1}{-2} \right) \text{ and } v = \left(\frac{1}{-2}
$$

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$
A^T A x = A^T v
$$

is consistent and the orthogonal projection *v^W* is equal to *Ax* where *x* is any solution.

Example. Find
$$
v_W
$$
 if $v = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}$, $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$

Steps. Find $A^T A$ and $A^T v$, then solve for *x*, then compute Ax .

Question. How far is *v* from *W*?

Orthogonal Projections Example. Find v_W if $v =$ $\sqrt{ }$ \overline{a} 6 5 4 \setminus $W =$ Span $\frac{1}{2}$ \int \downarrow γ \overline{a} 1 θ 1 \setminus $\Big\}$ $\sqrt{ }$ \overline{a} 1 1 $\overline{0}$ \setminus A \mathcal{L} $\sqrt{ }$ $\left| \begin{array}{c} \hline \end{array} \right|$ $A^T A_X = A^T M_N$
are prejecting variable

Steps. Find $A^T A$ and $A^T v$, then solve for *x*, then compute Ax . Question. How far is *v* from *W*? $A^T A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad A^T b = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ s \\ s \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$ $Solve \quad (2\choose 12) \times = \binom{10}{11} \quad \longrightarrow \quad \binom{2}{1} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \rightarrow \binom{1}{2} \begin{pmatrix} 1 & 2 \\ 1 & 10 \end{pmatrix}$ $\rightsquigarrow \begin{pmatrix} 1 & 2 & 11 \\ 0 & -3 & -12 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 11 \\ 0 & 1 & 4 \end{pmatrix} \rightsquigarrow \text{map} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \end{pmatrix}$ $\rightarrow \chi = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ i $||V_{W^{\perp}}|| = ||V - V_{W}||$
 $||V_{\infty}$ $||V - V_{W}||$ $||V - V||$ $= \left\| \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix} - \begin{pmatrix} 7 \\ 4 \\ 3 \end{pmatrix} \right\| \approx \left\| \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\| = \sqrt{(-1)^2 + 1^2 + 1^2}$

Theorem. Let $W = \text{Col}(A)$. For any vector v in \mathbb{R}^n , the equation

$$
A^T A x = A^T v
$$

is consistent and the orthogonal projection *v^W* is equal to *Ax* where *x* is any solution.

Special case. If the columns of A are independent then A^TA is invertible, and so

$$
v_W = A(A^T A)^{-1} A^T v.
$$

Why? The *x* we find tells us which linear combination of the columns of A gives us v_W . If the columns of A are independent, there's only one linear combination.

Matrices for projections

Fact. If the columns of A are independent and $W = \text{Col}(A)$ and $T: \mathbb{R}^3 \to \mathbb{R}^3$ is orthogonal projection onto W then the standard matrix for *T* is: $A(A^T A)^{-1} A^T$. std matrix

Why?

Example. Find the standard matrix for orthogonal projection of \mathbb{R}^3 onto $W = \operatorname{Span}$ $\sqrt{ }$ $\left| \right|$ \mathcal{L} $\sqrt{2}$ $\overline{1}$ 1 $\overline{0}$ 1 \setminus \vert , $\sqrt{2}$ $\overline{1}$ 1 1 $\overline{0}$ \setminus A \mathcal{L} $\sqrt{ }$ $\left| \right|$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

Summary of Section 6.3

- *•* The orthogonal projection of *v* onto *W* is *v^W*
- *• v^W* is the closest point in *W* to *v*.
- The distance from v to W is $||v_{W^{\perp}}||$.
- Theorem. Let $W = \text{Col}(A)$. For any *v*, the equation $A^T A x = A^T v$ is consistent and v_W is equal to Ax where x is any solution.
- Special case. If $L = \text{Span}\{u\}$ then $v_L = \frac{u \cdot v}{u \cdot u}$ *u*
- *•* Special case. If the columns of *^A* are independent then *^A^T ^A* is invertible, and so $v_W = A(A^T A)^{-1} A^T v$
- *•* When the columns of *A* are independent, the standard matrix for orthogonal projection to $Col(A)$ is $A(A^TA)^{-1}A^T$
- Let W be a subspace of \mathbb{R}^n and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the function given by $T(v) = v_W$. Then
	- \blacktriangleright *T* is a linear transformation
	- \blacktriangleright etc.
- *•* If *P* is the standard matrix then
	- **I** The 1–eigenspace of P is W (unless $W = 0$)
	- etc.