Announcements Feb 4

- Midterm 2 on March 6
- WeBWorK 2.6 due Thursday
- My office hours Monday 3-4 and Wed 2-3
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel (different this week)

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

• Supplemental problems and practice exams on the master web site

1. Answer the following questions. No justification for your answer is required.

Is the matrix
$$\begin{pmatrix} 0 & 0 & | \\ 0 & 0 & | \\ 0 & 0 & | \end{pmatrix}$$
 in reduced row echelon form?

YES NO

Is the vector $\binom{99}{97}$ a linear combination of the vectors $\binom{3}{4}$ and $\binom{5}{6}$?

YES NO

Suppose A is a 2×2 matrix and $A\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}19\\7\end{pmatrix}$. Is it possible that the set of solutions to Ax = 0 is the line $x_1 = x_2$?

> YES NO

Suppose A is a 4×5 matrix. Is it possible that Ax = b is consistent for all b in \mathbb{R}^4 ?

Suppose that v_1 , v_2 , and v_3 are vectors in \mathbb{R}^5 . Must it be true that v_1 , v_2 , and v_3 are linearly independent?

2. Answer the following questions. No justification for your answer is required.

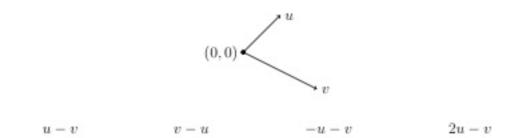
Complete the following definition: Vectors v_1, \ldots, v_k in \mathbb{R}^n are linearly independent if...

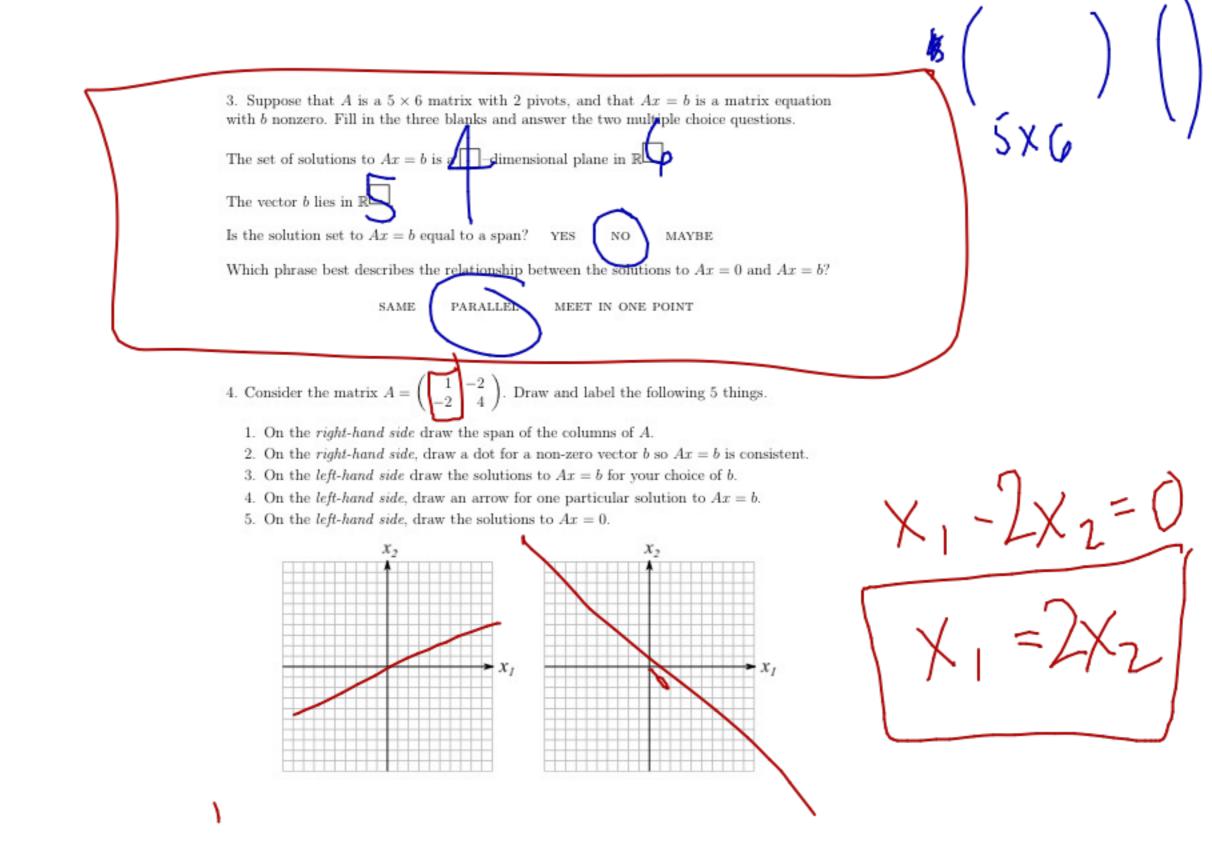
Write down one vector in
$$\mathbb{R}^3$$
 that is not in the span of the vectors $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$.

Find a matrix A so that the set of solutions to Ax = 0 is a line in \mathbb{R}^3 and so that the equation $Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ is consistent.

Circle the formula that best describes w in terms of u and v.

 $w \bullet$





5. Find the reduced row echelon form of the following matrix. Show your work.

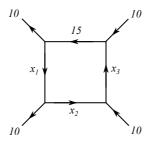
$\int 0$	0	1	2
1	3	-2	1
$\setminus 2$	6	0	10

6. Suppose that there is a matrix equaion Ax = b and that the reduced row echelon form of the augmented matrix (A|b) is

(0	1	-3	0	$ 7\rangle$
0	0	0	1	2
$\int 0$	0	$-3 \\ 0 \\ 0$	0	0

Write the parametric vector form of the solution to Ax = b.

7. The following diagram indicates traffic flow in the town square (the numbers indicate the number of cars per minute on each section of road).



Write down a **vector equation** describing the flow of traffic. Do not solve.

8. Find all values of h so that the vectors $\begin{pmatrix} 1\\ 1\\ -9 \end{pmatrix}$, $\begin{pmatrix} 0\\ 1\\ 6 \end{pmatrix}$, and $\begin{pmatrix} 1\\ h\\ h \end{pmatrix}$ are linearly dependent. Show your work.

Section 2.7

Bases

Bases

V =subspace of \mathbb{R}^n

A basis for V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

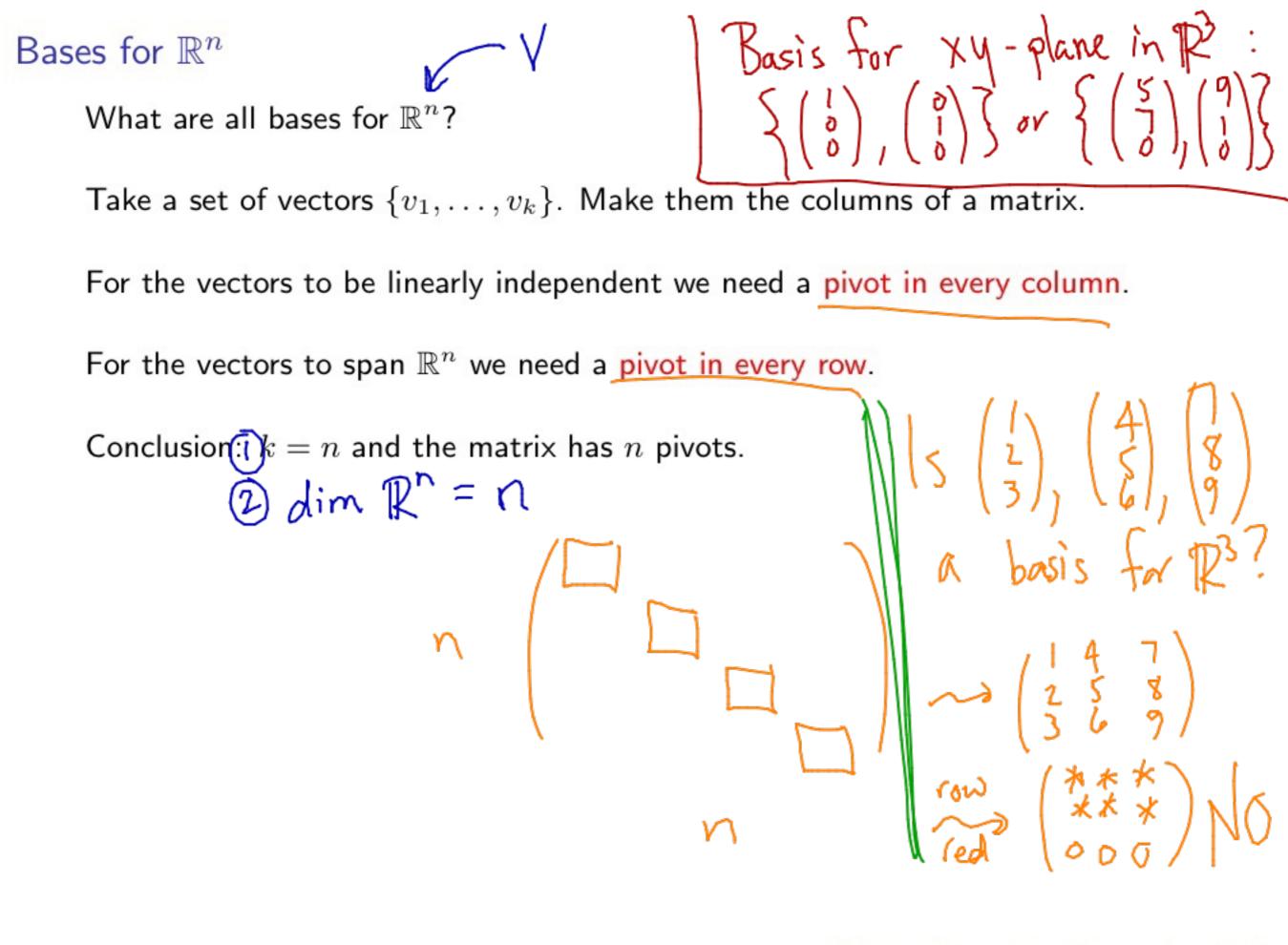
- 1. $V = \text{Span}\{v_1, \ldots, v_k\}$
- 2. v_1, \ldots, v_k are linearly independent

Equivalently, a basis is a *minimal spanning set*, that is, a spanning set where if you remove any one of the vectors you no longer have a spanning set.

 $\dim(V) = \operatorname{dimension} \operatorname{of} V = k = \operatorname{the number} \operatorname{of vectors} \operatorname{in the basis}$

(What is the problem with this definition of dimension?) Maybe two bases w(diff #'s f)

 $L_3\{\binom{1}{2},\binom{0}{1}\}$ or $\{\binom{1}{2},\binom{3}{4}\}$ L_3 M many H's ok-Q. What is one basis for \mathbb{R}^2 ? \mathbb{R}^n ? How many bases are there?



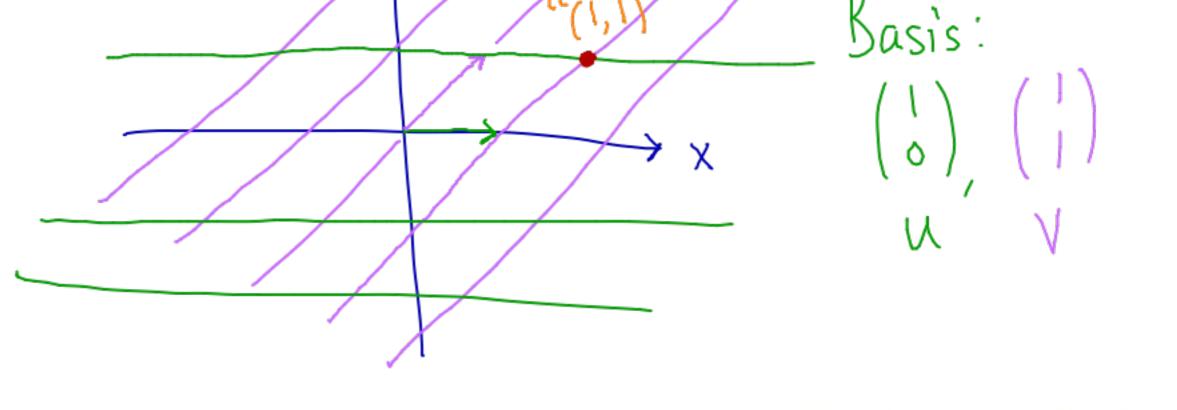
Who cares about bases

A basis $\{v_1, \ldots, v_k\}$ for a subspace V of \mathbb{R}^n is useful because:

Every vector v in V can be written in exactly one way:

$$v = c_1 v_1 + \dots + c_k v_k$$

So a basis gives coordinates for V, like latitude and longitude. See Section 2.8.



▲□▶▲□▶▲□▶▲□▶ □ りへ(?)

"(*\'*)

Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

Basis for Col(A) $\left\{ \left(\begin{array}{c} i \\ i \end{array} \right) \right\}$ line, 1-dim.

& Find rect-param Form... For Nul(A) Basis $A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$ $\longrightarrow \begin{pmatrix} \prod & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ X = - 4 - 5 PEANUTS $\begin{array}{ccc}
\mathcal{Y} = \mathcal{Y} & \mathcal{Y} \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix} + \mathcal{Z} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \\
\mathcal{F} = \mathcal{F} & \mathcal{Y} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} + \mathcal{Z} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ 111 $\begin{cases} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$ IT'S THE WAY HE TELLS IT ...

Bases for Nul(A) and Col(A)

Find bases for Nul(A) and Col(A)

・ロト <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 =

Bases for Nul(A) and Col(A)

In general:

- our usual parametric solution for Ax = 0 gives a basis for Nul(A)
- the pivot columns of A form a basis for Col(A)

Warning! Not the pivot columns of the reduced matrix.

What should you do if you are asked to find a basis for $Span\{v_1, \ldots, v_k\}$?

Find basis for Col(A) A= (V. V2...VK)

Bases for planes

Find a basis for the plane 2x + 3y + z = 0 in \mathbb{R}^3 .

This plane is
$$Nul(A)$$

 $A = (2 3 1)$

~ vect. param. form

~ 2 vectors.

Basis theorem

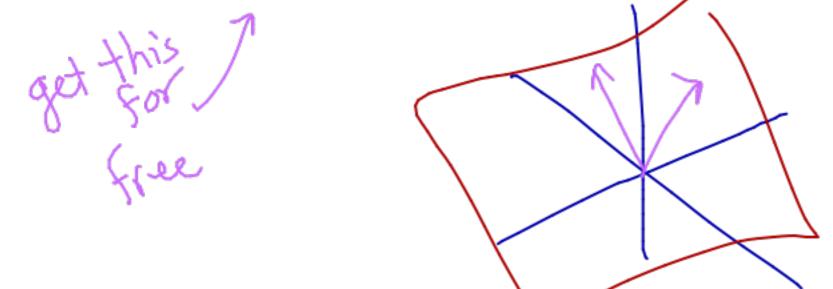
Basis Theorem

If V is a k-dimensional subspace of \mathbb{R}^n , then

- $\bullet\,$ any k linearly independent vectors of V form a basis for V
- $\bullet\,$ any k vectors that span V form a basis for V

In other words if a set has two of these three properties, it is a basis:

spans V, linearly independent, k vectors



We are skipping Section 2.8 this semester. But remember: the whole point of a basis is that it gives coordinates (like latitude and longitude) for a subspace. Every point has a unique address.

Section 2.7 Summary

- A basis for a subspace V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that
 - 1. $V = \mathsf{Span}\{v_1, \ldots, v_k\}$
 - 2. v_1, \ldots, v_k are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for Col(A) by taking pivot columns of A (not reduced A)
- Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • ੭ < ♡

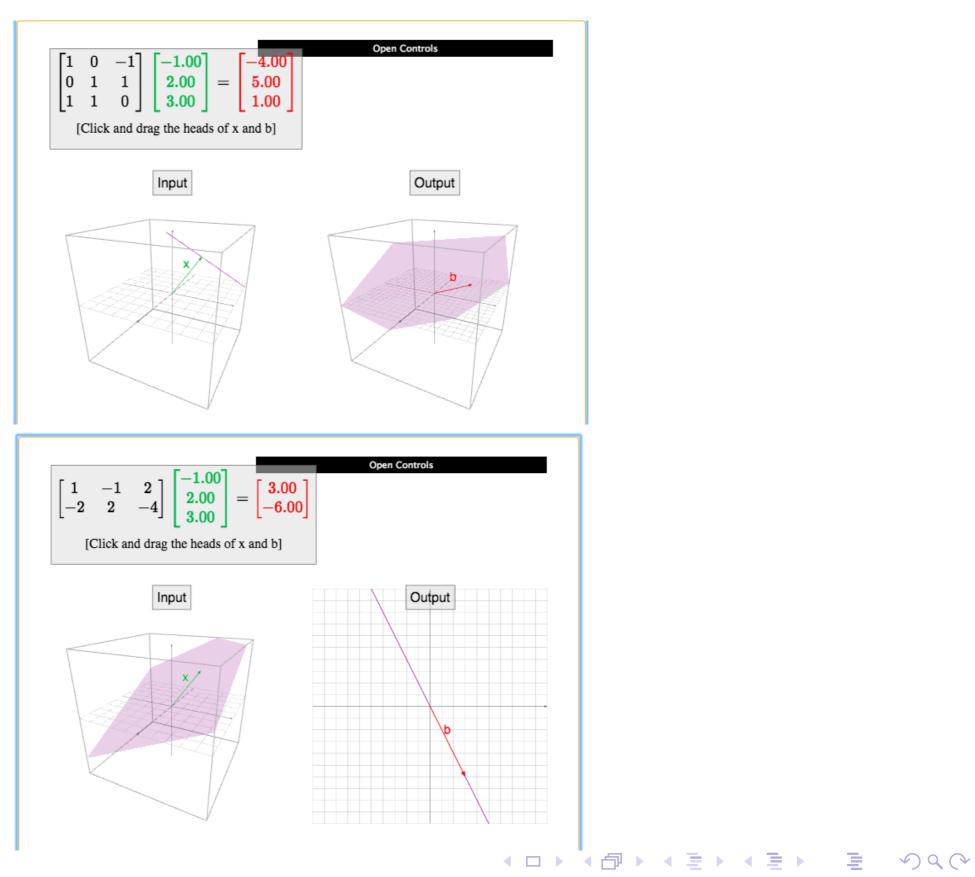
- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.

Section 2.9

The rank theorem

Rank Theorem

On the left are solutions to Ax = 0, on the right is Col(A):



Rank Theorem

 $\operatorname{rank}(A) = \dim \operatorname{Col}(A) = \#$ pivot columns $\operatorname{nullity}(A) = \dim \operatorname{Nul}(A) = \#$ nonpivot columns

Rank-Nullity Theorem. rank(A) + nullity(A) = #cols(A)

This ties together everything in the whole chapter: rank A describes the b's so that Ax = b is consistent and the nullity describes the solutions to Ax = 0. So more flexibility with b means less flexibility with x, and vice versa.

Example.
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Section 2.9 Summary

• Rank Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$