Announcements Feb 💯 ไไ

- Midterm 2 on March 6
- WeBWorK 2.7+2.9, 3.1 due Thursday
- My office hours Monday 3-4 and Wed 2-3
- Pop-up office hours Wed \$3:30 4
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel (different time week)
- Supplemental problems and practice exams on the master web site

· Come get your exam if you don't have it

· Will do midsemester Feedback this week.

Sections 3.1

Matrix Transformations

Section 3.1 Outline

- Learn to think of matrices as functions, called matrix transformations
- Learn the associated terminology: domain, codomain, range
- Understand what certain matrices do to \mathbb{R}^n

From matrices to functions

Let A be an $m \times n$ matrix.

We define a function

 $T: \mathbb{R}^n \to \mathbb{R}^m$ T(v) = Av

This is called a matrix transformation.

The domain of T is \mathbb{R}^n .

The co-domain of T is \mathbb{R}^m .

The range of T is the set of outputs: Col(A)

This gives us a*nother* point of view of Ax = b

Square matrices

What does each matrix do to \mathbb{R}^2 ?

Hint: if you can't see it all at once, see what happens to the x- and y-axes.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > > < 0 > < 0 > > < 0 > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

1

DQQ

Examples in \mathbb{R}^3

What does each matrix do to \mathbb{R}^3 ?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} \stackrel{\mathsf{c}}{\rightarrow} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ -\mathbf{y} \\ \mathbf{z} \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} = \begin{pmatrix} -\mathbf{Y} \\ \mathbf{X} \\ \mathbf{Z} \end{pmatrix}$$

Section 3.1 Summary

- If A is an m × n matrix, then the associated matrix transformation T is given by T(v) = Av. This is a function with domain Rⁿ and codomain R^m and range Col(A).
- If A is $n \times n$ then T does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sections 3.2

One-to-one and onto transformations

Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto

 $T: \mathbb{R}^n \to \mathbb{R}^m$ fr. One to one: for each output, at most one input. From f(x) = x Galc: $f(x) = x^2$ not one to one $g(x) = x^2$ not one to one same output -3,3 have same output Onto: at least one input for each element of co-domain or: range = co-domain $f(x) = X \quad f: \mathbb{R} \to \mathbb{R}$ onto $f(x) = X^2 \quad f: \mathbb{R} \to \mathbb{R}$ not onto -7 not an $g(x) = X^2 \quad f: \mathbb{R} \to \mathbb{R}$ not onto -7 output - 「 「 「 」 ・ 「 」 ・ 「 」 ・ 「 」 ・ 「 」 ・

One-to-one

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .

In other words: different inputs have different outputs.

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- T is one-to-one
- the columns of A are linearly independent
- Ax = 0 has only the trivial solution
- A has a pivot in each column
- the range of T has dimension \boldsymbol{n}

What can we say about the relative sizes of m and n if T is one-to-one?

A = 2

・ ロ ト ・ 白 ト ・ 回 ト

= >

I

fall: m>n

Draw a picture of the range of a one-to-one mapping $\mathbb{R} \to \mathbb{R}^3$.

Onto

 $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- T is onto
- the columns of A span \mathbb{R}^m
- A has a pivot in each row
- Ax = b is consistent for all b in \mathbb{R}^m
- the range of T has dimension m

What can we say about the relative sizes of m and n if T is onto?

wide: m≤n

Give an example of an onto mapping $\mathbb{R}^3 \to \mathbb{R}.4=(123)$

One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto? $\begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} 2 & \text{pivots} \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ one-to-one onto Spot check T is onto for 3rd matrix: For output (S) use input (S) Actually any (3) works, so not one-to-one. Example: A = (20) Not one-to-one or onto ・ロット (四マ・山下・山下) DQA

One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

(ロ)

Which are one to one / onto?

Summary of Section 3.2

- $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - \blacktriangleright T is one-to-one
 - the columns of A are linearly independent
 - A x = 0 has only the trivial solution
 - A has a pivot in each column
 - \blacktriangleright the range has dimension n
- $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \blacktriangleright T is onto
- the columns of A span \mathbb{R}^m
- A has a pivot in each row
- Ax = b is consistent for all b in \mathbb{R}^m .
- \blacktriangleright the range of T has dimension m

Section 3.3

Linear Transformations

Section 3.3 Outline

- Understand the definition of a linear transformation
- Linear transformations are the same as matrix transformations
- Find the matrix for a linear transformation

Linear transformations

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

- T(u+v) = T(u) + T(v) for all u, v in \mathbb{R}^n .
- T(cv) = cT(v) for all v in \mathbb{R}^n and c in \mathbb{R} .

Notice that T(0) = 0. Why?

We have the standard basis vectors for \mathbb{R}^n :

 $e_1 = (1, 0, 0, \dots, 0)$ $e_2 = (0, 1, 0, \dots, 0)$

If we know $T(e_1), \ldots, T(e_n)$, then we know every T(v). Why?

In engineering, this is called the principle of superposition.

Theorem. Every linear transformation is a matrix transformation.

This means that for any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ there is an $m \times n$ matrix A so that

$$T(v) = Av$$

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

for all v in \mathbb{R}^n .

The matrix for a linear transformation is called the standard matrix.

Theorem. Every linear transformation is a matrix transformation.

Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ the standard matrix is:

$$A = \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{pmatrix}$$

Why? Notice that $Ae_i = T(e_i)$ for all *i*. Then it follows from linearity that T(v) = Av for all *v*.

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

The identity

The identity linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is

T(v) = v

What is the standard matrix?

This standard matrix is called I_n or I.

Suppose $T : \mathbb{R}^2 \to \mathbb{R}^3$ is the function given by:

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x+y\\y\\x-y\end{array}\right)$$

What is the standard matrix for T?

In fact, a function $\mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when the coordinates are linear (linear combinations of the variables).

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Find the standard matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the *x*-direction and 3 in the *y*-direction, and then reflects over the line y = x.

Find the standard matrix for the linear transformation of \mathbb{R}^2 that projects onto the y-axis and then rotates counterclockwise by $\pi/2$.

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.

Discussion

Summary of 3.3

- A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if
 - $T(u+v) = T(u) + T(v) \text{ for all } u, v \text{ in } \mathbb{R}^n.$
 - $T(cv) = cT(v) \text{ for all } v \in \mathbb{R}^n \text{ and } c \text{ in } \mathbb{R}.$
- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).
- The standard matrix for a linear transformation has its *i*th column equal to T(e_i).

▲□▶▲□▶▲■▶▲■▶ ● ● のへの