Announcements Feb 17

- Midterm 2 on March 6
- WeBWorK 2.7+2.9, 3.1 due Thursday
- My office hours Monday 3-4 and Wed 2-3
- Pop-up office hours Wed 3:30 – 4
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45

- PLUS sessions Mon/Wed 6-7 LLC West with Miguel (different this week)
- Supplemental problems and practice exams on the master web site

 - Come get your exam if you don't have it
 - Will do midterm feedback this week.
Sections 3.1
Matrix Transformations
Section 3.1 Outline

- Learn to think of matrices as functions, called matrix transformations
- Learn the associated terminology: domain, codomain, range
- Understand what certain matrices do to \mathbb{R}^n
From matrices to functions

Let A be an $m \times n$ matrix.

We define a function

$$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

$$T(v) = Av$$

This is called a matrix transformation.

The **domain** of T is \mathbb{R}^n.

The **co-domain** of T is \mathbb{R}^m.

The **range** of T is the set of outputs: $\text{Col}(A)$

This gives us another point of view of $Ax = b$
Square matrices

What does each matrix do to \mathbb{R}^2?

Hint: if you can’t see it all at once, see what happens to the x- and y-axes.

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\text{ shear}
\]

\[
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\text{ first col}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\text{ rotates by } \theta
\]

rotate by $\pi/4$ and scale by $\sqrt{2}$
Examples in \mathbb{R}^3

What does each matrix do to \mathbb{R}^3?

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
x \\
y \\
0
\end{pmatrix}
\]
projection to xy-plane

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
x \\
y \\
-z
\end{pmatrix}
\]
refl. about xz-plane

\[
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-y \\
x \\
z
\end{pmatrix}
\]
rotate about z-axis by $\pi/2$

rotate about z-axis by $\pi/2$
Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\text{Col}(A)$.

- If A is $n \times n$ then T does something to \mathbb{R}^n; basic examples: reflection, projection, scaling, shear, rotation.
Sections 3.2

One-to-one and onto transformations
Section 3.2 Outline

- Learn the definitions of one-to-one and onto functions
- Determine if a given matrix transformation is one-to-one and/or onto

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ fn} \]

One to one: for each output, at most one input.

From Calc:
- \(f(x) = x \) \(\checkmark \)
- \(g(x) = x^2 \) not one to one
 \(-3, 3\) have same output

Onto: at least one input for each element of co-domain
 or: range = co-domain

From Calc:
- \(f(x) = x \) \(f : \mathbb{R} \rightarrow \mathbb{R} \) onto
- \(g(x) = x^2 \) \(g : \mathbb{R} \rightarrow \mathbb{R} \) not onto
 \(-7 \) not an output
One-to-one

\(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if each \(b \) in \(\mathbb{R}^m \) is the output for at most one \(v \) in \(\mathbb{R}^n \).

In other words: different inputs have different outputs.

Theorem. Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix transformation with matrix \(A \). Then the following are all equivalent:

- \(T \) is one-to-one
- the columns of \(A \) are linearly independent
- \(Ax = 0 \) has only the trivial solution
- \(A \) has a pivot in each column
- the range of \(T \) has dimension \(n \)

What can we say about the relative sizes of \(m \) and \(n \) if \(T \) is one-to-one?

\[\forall \text{all: } m \geq n \]

Draw a picture of the range of a one-to-one mapping \(\mathbb{R} \to \mathbb{R}^3 \).

\[A = \left(\begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{1}{3} \end{array} \right) \]
Onto

$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m, that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m.

Theorem. Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:

- T is onto
- the columns of A span \mathbb{R}^m
- A has a pivot in each row
- $Ax = b$ is consistent for all b in \mathbb{R}^m
- the range of T has dimension m

What can we say about the relative sizes of m and n if T is onto?

wide: $m \leq n$

Give an example of an onto mapping $\mathbb{R}^3 \rightarrow \mathbb{R}$. $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
One-to-one and Onto

Do the following give matrix transformations that are one-to-one? onto?

\[
\begin{pmatrix}
1 & 0 & 7 \\
0 & 1 & 2 \\
0 & 0 & 9
\end{pmatrix} \quad \text{2 pivots} \quad \begin{pmatrix}
1 & 0 \\
1 & 1 \\
2 & 1
\end{pmatrix} \quad \text{2 pivots} \\
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1
\end{pmatrix} \quad \text{2 pivots}
\]

- One-to-one: ✔ ✔ ✗ ✔
- Onto: ✔ ✗ ✔ ✔

Spot check T is onto for 3rd matrix:

For output \(\begin{pmatrix} 5 \\ 7 \\ 0 \end{pmatrix} \) use input \(\begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix} \)

Actually, any \(\begin{pmatrix} 5 \\ 1 \\ z \end{pmatrix} \) works, so not one-to-one.

Example: $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 8 \end{pmatrix}$

Not one-to-one or onto
One-to-one and Onto

Which of the previously-studied matrix transformations of \mathbb{R}^2 are one-to-one? Onto?

\[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix} \quad \text{reflection}
\]

\[
\begin{pmatrix}
1 & 0 \\
0 & 0 \\
\end{pmatrix} \quad \text{projection}
\]

\[
\begin{pmatrix}
3 & 0 \\
0 & 3 \\
\end{pmatrix} \quad \text{scaling}
\]

\[
\begin{pmatrix}
1 & 1 \\
0 & 1 \\
\end{pmatrix} \quad \text{shear}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{pmatrix} \quad \text{rotation}
\]
Which are one to one / onto?

- \(\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \)
- \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \)
- \(\begin{pmatrix} 1 & -2 & -1 & 2 \\ -1 & 2 & -4 \end{pmatrix} \)

- onto
- one-to-one
- neither
Summary of Section 3.2

- $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is **one-to-one** if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n.

- **Theorem.** Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is one-to-one
 - the columns of A are linearly independent
 - $Ax = 0$ has only the trivial solution
 - A has a pivot in each column
 - the range has dimension n

- $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is **onto** if the range of T equals the codomain \mathbb{R}^m, that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^n.

- **Theorem.** Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is onto
 - the columns of A span \mathbb{R}^m
 - A has a pivot in each row
 - $Ax = b$ is consistent for all b in \mathbb{R}^m.
 - the range of T has dimension m
Section 3.3

Linear Transformations
Section 3.3 Outline

- Understand the definition of a linear transformation
- Linear transformations are the same as matrix transformations
- Find the matrix for a linear transformation
Linear transformations

A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if

- $T(u + v) = T(u) + T(v)$ for all u, v in \mathbb{R}^n.
- $T(cv) = cT(v)$ for all v in \mathbb{R}^n and c in \mathbb{R}.

Notice that $T(0) = 0$. Why?

We have the standard basis vectors for \mathbb{R}^n:

$$e_1 = (1, 0, 0, \ldots, 0)$$
$$e_2 = (0, 1, 0, \ldots, 0)$$
$$\vdots$$

If we know $T(e_1), \ldots, T(e_n)$, then we know every $T(v)$. Why?

In engineering, this is called the principle of superposition.
Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

This means that for any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ there is an $m \times n$ matrix A so that

$$T(v) = Av$$

for all v in \mathbb{R}^n.

The matrix for a linear transformation is called the **standard matrix**.
Linear transformations are matrix transformations

Theorem. Every linear transformation is a matrix transformation.

Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ the standard matrix is:

$$A = \begin{pmatrix}
T(e_1) & T(e_2) & \cdots & T(e_n)
\end{pmatrix}$$

Why? Notice that $Ae_i = T(e_i)$ for all i. Then it follows from linearity that $T(v) = Av$ for all v.
The identity

The identity linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is

$$T(v) = v$$

What is the standard matrix?

This standard matrix is called I_n or I.
Linear transformations are matrix transformations

Suppose $T : \mathbb{R}^2 \to \mathbb{R}^3$ is the function given by:

$$T \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x + y \\ y \\ x - y \end{array} \right)$$

What is the standard matrix for T?

In fact, a function $\mathbb{R}^n \to \mathbb{R}^m$ is linear exactly when the coordinates are linear (linear combinations of the variables).
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that stretches by 2 in the x-direction and 3 in the y-direction, and then reflects over the line $y = x$.
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that projects onto the y-axis and then rotates counterclockwise by $\pi/2$.
Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.
Discussion Question

Find a matrix that does this.
Summary of 3.3

- A function \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear if
 - \(T(u + v) = T(u) + T(v) \) for all \(u, v \) in \(\mathbb{R}^n \).
 - \(T(cv) = cT(v) \) for all \(v \in \mathbb{R}^n \) and \(c \) in \(\mathbb{R} \).

- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).

- The standard matrix for a linear transformation has its 1st column equal to \(T(e_i) \).