Announcements Feb 19

- Midterm 2 on March 6 $\frac{31833}{3}$
-
- Mid-semester evaluation under Quizzes on Canvas (due today)
- My office hours Monday 3-4 and Wed 2-3 in Skiles 234
- Pop-up office hours Wed 11-11:30 this week in Skiles 234
- TA office hours in Skiles 230 (you can go to any of these!)
	- \blacktriangleright Isabella Thu 2-3
	- \blacktriangleright Kyle Thu 1-3
	- \blacktriangleright Kalen Mon/Wed 1-1:50
	- Sidhanth Tue $10:45-11:45$
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel
- Supplemental problems and practice exams on the master web site

4 ロ ト 4 何 ト 4 ミ ト 4 ミ ト ・ ミ - り 9 Q Q

• Quiz on $3.2, 3.3$ on fri

Section 3.4 Matrix Multiplication

K ロ → K 伊 → K ミ → K ミ → シ ミ → の Q (V

Section 3.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things

K ロ ▶ K @ ▶ K 重 ▶ K 重 ▶ │ 重 │ ◆ Q Q ⊙

Function composition

Remember from calculus that if *f* and *g* are functions then the composition $f \circ g$ is a new function defined as follows:

$$
f \circ g(x) = f(g(x))
$$

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ │ 듣 │ ◆ 9 Q (Ŷ

In words: first apply *g*, then *f*.

Example: $f(x) = x^2$ and $g(x) = x + 1$.

Note that $f \circ g$ is usually different from $g \circ f$.

Composition of linear transformations

We can do the same thing with linear transformations $T \leftarrow \mathbb{R}^m \big\} \rightarrow \mathbb{R}^p$ and $U:\mathbb{R}^n\rightarrow\mathbb{R}^m$ and make the composition $T\circ U.$ $\sqrt{2}$ in \mathbb{R}^n Notice that both have an m . Why? What are the domain and codomain for $T \circ U$? \mathbb{D}^{∞} Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$ Why? x in R What is the motrix for Tou? We know: pxn range contained in range of T

4 ロ > 4 何 > 4 ヨ > 4 ヨ > - ヨ - 9 Q Q

Composition of linear transformations

Example. $T =$ projection to y-axis and $U =$ reflection about $y = x$ in \mathbb{R}^2

$$
\begin{array}{c} \mathbb{T} \colon \mathbb{R}^2 \to \mathbb{R}^2 \\ \mathbb{R} \colon \mathbb{R}^2 \to \mathbb{R}^2 \end{array}
$$

What is the standard matrix for $T \circ U$?

What about $U \circ T$?

$$
T \circ U \iff \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
$$

$$
U \circ T \iff \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 토 ▶ 『 론 → ① Q ①

Matrix Multiplication

And now for something completely different (not really!)

Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the *ij*th entry.

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

 $(AB)_{ij} = r_i \cdot b_j$

where r_i is the ith row of A, and b_j is the jth column of B.

Or: the jth column of AB is A times the jth column of B.

Multiply these matrices (both ways):

$$
\left(\frac{1}{4}\frac{2}{5}\frac{3}{6}\right)\left(\begin{array}{c}0\\1\\2\end{array}\right)\begin{pmatrix}-2\\-1\\0\end{pmatrix}=\begin{pmatrix}8&-4\\17&-13\end{pmatrix}
$$

2 \times ³ \times 2 $\begin{array}{c}2\times2\end{array}$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◇ Q Q →

Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. Suppose that *A* and *B* are the standard matrices for the linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ and $U: \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB .

Why?

$$
(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)
$$

So we need to check that $A(Bv)=(AB)v$. Enough to do this for $v=e_i$. In this case *Bv* is the *i*th column of *B*. So the left-hand side is *A* times the *i*th column of *B*. The right-hand side is the *i*th column of *AB* which we already said was *A* times the *i*th column of *B*. It works!

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ │ 듣 │ ◆ 9 Q (Ŷ

Matrix Multiplication and Linear Transformations

Fact. Suppose that A and B are the standard matrices for the linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ and $U: \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB .

Example. $T =$ projection to y-axis and $U =$ reflection about $y = x$ in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

$$
\text{Matrix For } T : \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
$$
\n
$$
\text{Matrix For } U : \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
$$
\n
$$
\text{Matrix For } U : \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$
\n
$$
\text{Matrix For } U = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 기로 볼 → 9 Q @

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy -plane and then projects onto the yz -plane.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q (*)

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Properties of Matrix Multiplication

\n- \n
$$
A(BC) = (AB)C
$$
\n
\n- \n $A(B+C) = AB + AC$ \n
\n- \n $B + C = AB + AC$ \n
\n- \n $B + C = BA + CA$ \n
\n- \n $r(AB) = (rA)B = A(rB)$ \n
\n- \n $F = \frac{A}{A} \cdot \frac{B}{A} \cdot \frac{B}{A}}$ \n
\n- \n $I_m A = A = A I_n$, where I_k is the $k \times k$ identity matrix.\n
\n

Multiplication is associative because function composition is (this would be

hard to check from the definition!).

Warning!

- AB is not always equal to BA
- $AB = AC$ does not mean that $B = C$
- $AB = 0$ does not mean that A or B is 0

$$
\left(\begin{array}{c}\n\sqrt{6}\\
\sqrt{6}\\
0\n\end{array}\right)\left(\begin{array}{c}\n\sqrt{6}\\
0\n\end{array}\right) = \left(\begin{array}{c}\n\sqrt{6}\\
0\n\end{array}\right) \left(\begin{array}{c}\n\sqrt{6}\\
0\n\end{array}\right) = \left(\begin{array}{c}\n\sqrt{6}\\
0\n\end{array}\right)
$$

Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

 $A+B=B+A$ $(A + B) + C = A + (B + C)$ $r(A+B)=rA+rB$ $(r+s)A = rA + sA$ $(rs)A = r(sA)$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $A+0=A$

(We can define linear transformations $T+U$ ad cT , and so all of the above facts are also facts about linear transformations.)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q (*)

Summary of Section 3.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do *U* then *T*)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- *•* Matrix multiplication: the *i*th column of *AB* is *A*(*bi*)
- *•* Suppose that *A* and *B* are the standard matrices for the linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ and $U: \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB .

K ロ ▶ K 印 ▶ K ミ ▶ K ミ ▶ │ 듣 ▶ ◇ ♀ ⊙ ♀ ⊙

- *•* Warning!
	- ▶ *AB* is not always equal to *BA*
	- \blacktriangleright $AB = AC$ does not mean that $B = C$
	- \blacktriangleright $AB = 0$ does not mean that A or B is 0

Section 3.5 Outline

- The definition of a matrix inverse
- How to find a matrix inverse
- Inverses for linear transformations

 $7x = 35$ $7^{-1} \cdot 7 \times = 7^{-1} \cdot 35$ $1x = 5$

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ 기로 못 ◆ 9 Q @

Inverses

To solve

$$
Ax = b
$$

we might want to "divide both sides by *A*".

We will make sense of this...

Inverses

 $A = n \times n$ matrix.

 A is invertible if there is a matrix B with

$$
AB = BA = I_n
$$

B is called the inverse of A and is written A^{-1}

Example:

$$
\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \ -1 & 2 \end{pmatrix}
$$

$$
\begin{pmatrix} 2 & 1 \ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \ -1 & 2 \end{pmatrix} \in \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ⊙

The 2×2 Case

Let
$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
. Then $det(A) = ad - bc$ is the determinant of A.

Fact. If det(A) \neq 0 then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If $det(A) = 0$ then A is not invertible.

$$
\begin{pmatrix} 5 & 10 \\ 7 & 14 \end{pmatrix} = 5.14 - 7.10 = 0
$$

not invertible.

Example.
$$
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}
$$

 $\begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Solving Linear Systems via Inverses

Fact. If A is invertible, then $Ax = b$ has exactly one solution:

 $x = A^{-1}b.$

Solve

$$
2x + 3y + 2z = 1
$$

$$
x + 3z = 1
$$

$$
2x + 2y + 3z = 1
$$

Using

$$
\left(\begin{array}{ccc} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{array}\right)
$$

Kロト K団 K K ミト K ミト / ミー のQ (V)

Solving Linear Systems via Inverses

What if we change *b*?

$$
2x + 3y + 2z = 1
$$

$$
x + 3z = 0
$$

$$
2x + 2y + 3z = 1
$$

Using

$$
\left(\begin{array}{ccc} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{array}\right)
$$

So finding the inverse is essentially the same as solving all *Ax* = *b* equations at once (fixed *A*, varying *b*).