Announcements Feb 19

- Midterm 2 on March 6 3.2 & 3.3
- WeBWorK 27428/18/12 due Thursday
- Mid-semester evaluation under Quizzes on Canvas (due today)
- My office hours Monday 3-4 and Wed 2-3 in Skiles 234
- Pop-up office hours Wed 11-11:30 this week in Skiles 234
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel
- Supplemental problems and practice exams on the master web site

· Quiz on 3.2, 3.3 on Fri

Section 3.4 Matrix Multiplication

Section 3.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things

Composition:
$$g \circ f(x) = g(f(x))$$

Example: $f(x) = x + 1$
 $g(x) = x^{2}$
 $g \circ f(x) = (x + 1)^{2}$
 $f \circ g(x) = x^{2} + 1$
 $g \circ f$
 $g \circ f$
 $g(x) = x^{2}$

Function composition

Remember from calculus that if f and g are functions then the composition $f \circ g$ is a new function defined as follows:

$$f \circ g(x) = f(g(x))$$

< ロ ト < 回 ト < 三 ト < 三 ト < 三 < つ < ()

In words: first apply g, then f.

Example: $f(x) = x^2$ and g(x) = x + 1.

Note that $f \circ g$ is usually different from $g \circ f$.

Composition of linear transformations

We can do the same thing with linear transformations $T: \mathbb{R}^m \to \mathbb{R}^p$ and $U: \mathbb{R}^n \to \mathbb{R}^m$ and make the composition $T \circ U$. VinR Notice that both have an m. Why? What are the domain and codomain for $T \circ U$? 1DC Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$ Why? x in R What is the matrix for ToU? We know: pxn range contained in range of T

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

DQC

Composition of linear transformations

Example. T =projection to y-axis and U =reflection about y = x in \mathbb{R}^2

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathcal{U}: \mathbb{R}^2 \to \mathbb{R}^2$$

What is the standard matrix for $T \circ U$?

What about $U \circ T$?

$$T \circ U \iff \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$U \circ T \iff \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Matrix Multiplication

And now for something completely different (not really!)

Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the *ij*th entry.

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and

 $(AB)_{ij} = r_i \cdot b_j$

where r_i is the *i*th row of A, and b_j is the *j*th column of B.

Or: the *j*th column of AB is A times the *j*th column of B.

Multiply these matrices (both ways):

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 0 & -2 \\ 1 & -1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 8 & -4 \\ 17 & -13 \end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2$$

Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. Suppose that A and B are the standard matrices for the linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$ and $U : \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB.

Why?

$$(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv)$$

So we need to check that A(Bv) = (AB)v. Enough to do this for $v = e_i$. In this case Bv is the *i*th column of B. So the left-hand side is A times the *i*th column of B. The right-hand side is the *i*th column of AB which we already said was A times the *i*th column of B. It works!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrix Multiplication and Linear Transformations

Fact. Suppose that A and B are the standard matrices for the linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$ and $U : \mathbb{R}^p \to \mathbb{R}^n$. The standard matrix for $T \circ U$ is AB.

Example. T = projection to y-axis and U = reflection about y = x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

$$Matrix \text{ for } T : \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$Matrix \text{ for } U : \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$Matrix \text{ for } T \cdot U = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$U \circ T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ りへで

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.

▲□▶▲□▶▲□▶▲□▶ □ りへ?

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Properties of Matrix Multiplication

•
$$A(BC) = (AB)C$$
 b|c composition \longrightarrow mult of mat's
• $A(B+C) = AB + AC$ of L.T.'s
• $(B+C)A = BA + CA$
• $r(AB) = (rA)B = A(rB)$ (in \mathbb{R} (scalar)
• $(\overline{AB})^T = \overline{B^T} A^T$
• $I_m A = A = AI_n$, where I_k is the $k \times k$ identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- AB is not always equal to BA
- AB = AC does not mean that B = C
- AB = 0 does not mean that A or B is 0

$$\begin{pmatrix} 1 & 8 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0$$

▲□▶▲□▶▲□▶▲□▶ □ りへつ

Sums and Scalar Multiples

Same as for vectors: component-wise, so matrices must be same size to add.

A + B = B + A(A+B) + C = A + (B+C)r(A+B) = rA + rB(r+s)A = rA + sA(rs)A = r(sA) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ A + 0 = A

(We can define linear transformations T + U ad cT, and so all of the above facts are also facts about linear transformations.)

Summary of Section 3.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- Suppose that A and B are the standard matrices for the linear transformations T : ℝⁿ → ℝ^m and U : ℝ^p → ℝⁿ. The standard matrix for T ∘ U is AB.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • つへ ()

- Warning!
 - \blacktriangleright AB is not always equal to BA
 - $\blacktriangleright AB = AC \text{ does not mean that } B = C$
 - $\blacktriangleright AB = 0 \text{ does not mean that } A \text{ or } B \text{ is } \mathbf{0}$

Section 3.5 Outline

- The definition of a matrix inverse
- How to find a matrix inverse
- Inverses for linear transformations

 $7_{x} = 35$ $7'.7_{x} = 7'.35$ 1.x=5

Inverses

To solve

$$Ax = b$$

we might want to "divide both sides by A".

We will make sense of this...

Inverses

 $A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$AB = BA = I_n$$

B is called the inverse of A and is written A^{-1}

Example:

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

・ロト <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 =

The 2×2 Case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then $det(A) = ad - bc$ is the determinant of A .

Fact. If det(A) $\neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If det(A) = 0 then A is not invertible.

$$\begin{pmatrix} 5 & 10 \\ 7 & 14 \end{pmatrix} = 5 \cdot 14 - 7 \cdot 10 = 0$$

not invertible.

Example.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$
.
 $\begin{pmatrix} -1 \\ -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} -4 \\ -3 \end{pmatrix} \begin{pmatrix} -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Solving Linear Systems via Inverses

Fact. If A is invertible, then Ax = b has exactly one solution:

 $x = A^{-1}b.$

Solve

$$2x + 3y + 2z = 1$$
$$x + 3z = 1$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□▶

Solving Linear Systems via Inverses

What if we change *b*?

$$2x + 3y + 2z = 1$$
$$x + 3z = 0$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

So finding the inverse is essentially the same as solving all Ax = b equations at once (fixed A, varying b).