Announcements Feb 26

- Midterm 2 on March 6
- I will be away for the review on March 4 (Jankowski will sub)
- WeBWorK 3.2 and 3.3 due Thursday
- Mid-semester evaluation under Quizzes on Canvas (due today!)
- **My office hours Monday 3-4 and Wed 2-3 in Skiles 234**
- Pop-up office hours today Wed 11-11:30 (this week only) in Skiles 234
- **TA office hours in Skiles 230 (you can go to any of these!)**
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45

- **PLUS sessions Mon/Wed 6-7 LLC West with Miguel**
- Supplemental problems and practice exams on the master web site
Section 3.5
Matrix Inverses
Section 3.5 Outline

- The definition of a matrix inverse
- How to find a matrix inverse
- Inverses for linear transformations
Inverses

To solve

\[Ax = b \]

we might want to “divide both sides by \(A \).”

We will make sense of this...

\[
A^{-1}Ax = A^{-1}b
\]

\[
x = A^{-1}b
\]
Inverses

$A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$AB = BA = I_n$$

B is called the inverse of A and is written A^{-1}

Example:

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$
The 2 × 2 Case

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $\det(A) = ad - bc$ is the determinant of A.

Fact. If $\det(A) \neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If $\det(A) = 0$ then A is not invertible.

Example. \[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}. \]
Solving Linear Systems via Inverses

Fact. If A is invertible, then $Ax = b$ has exactly one solution:

$$x = A^{-1}b.$$

Solve

$$2x + 3y + 2z = 1$$
$$x + 3z = 1$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 2 \end{pmatrix} A^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$$

$$A^{-1} b = x$$
Solving Linear Systems via Inverses

What if we change b?

\[
2x + 3y + 2z = 1 \\
x + 3z = 0 \\
2x + 2y + 3z = 1
\]

Using

\[\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix} = \begin{pmatrix} \text{MATRICES} \end{pmatrix} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix}
\]

So finding the inverse is essentially the same as solving all $Ax = b$ equations at once (fixed A, varying b).
Some Facts

Say that A and B are invertible $n \times n$ matrices.

- A^{-1} is invertible and $(A^{-1})^{-1} = A$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

What is $(ABC)^{-1}$?

\[(ABC)(B^{-1}A^{-1}) \]

\[= A(BB^{-1})A^{-1} \]

\[= AA^{-1} \]

\[= I \]

\[(AB)(A^{-1}B^{-1}) = I \]
A recipe for the inverse

Suppose $A = n \times n$ matrix.

- Row reduce $(A \mid I_n)$
- If reduction has form $(I_n \mid B)$ then A is invertible and $B = A^{-1}$.
- Otherwise, A is not invertible.

Example. Find $\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}^{-1}$

\[
\begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}
\]

What if you try this on one of our 2×2 examples, such as $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$?
Why Does This Work?

First answer: we can think of the algorithm as simultaneously solving

\[Ax_1 = e_1 \]
\[Ax_2 = e_2 \]

and so on. But the columns of \(A^{-1} \) are \(A^{-1}e_i \), which is \(x_i \).
Matrix algebra with inverses

We saw that if $Ax = b$ and A is invertible then $x = A^{-1}b$.

We can also, for example, solve for the matrix X, assuming that

$$AX(C + DX)^{-1} = B$$

Assume that all matrices arising in the problem are $n \times n$ and invertible.

$$X(C + DX)^{-1} = A^{-1}B$$

$$X = A^{-1}B(C + DX)$$

$$X = A^{-1}BC + A^{-1}BDX$$

$$X - A^{-1}BDX = A^{-1}BC$$

$$(I - A^{-1}BD)X$$

$$X(I - A^{-1}BD) = A^{-1}BC$$

$$X = A^{-1}BC(I - A^{-1}BD)^{-1} A^{-1}BC$$
Invertible Functions

A function $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is invertible if there is a function $U : \mathbb{R}^n \rightarrow \mathbb{R}^n$, so

$$T \circ U = U \circ T = \text{identity}$$

That is,

$$T \circ U (v) = U \circ T (v) = v \text{ for all } v \in \mathbb{R}^n$$

Fact. Suppose $A = n \times n$ matrix and T is the matrix transformation. Then T is invertible as a function if and only if A is invertible. And in this case, the standard matrix for T^{-1} is A^{-1}.

$$T \circ T^{-1} = \text{Ident.}$$

$A A^{-1} = I$

Example. Counterclockwise rotation by $\pi/2$.

Calc

$f(x) = x^3$

$g(x) = \sqrt[3]{x}$

$f \circ g (x) = x$

$g \circ f (x) = x$
Which are invertible linear transformations of \mathbb{R}^2?

- reflection about the x-axis
- projection to the x-axis
- rotation by π
- reflection through the origin
- a shear
- dilation by 2
Summary of Section 3.5

- A is invertible if there is a matrix B (called the inverse) with $AB = BA = I_n$

- For a 2×2 matrix A we have that A is invertible exactly when $\det(A) \neq 0$ and in this case
 \[
 A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
 \]

- If A is invertible, then $Ax = b$ has exactly one solution:
 \[
 x = A^{-1}b.
 \]

- $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$

- Recipe for finding inverse: row reduce $(A \mid I_n)$.

- Invertible linear transformations correspond to invertible matrices.
Section 3.6
The invertible matrix theorem
Section 3.6 Outline

- The invertible matrix theorem
The Invertible Matrix Theorem

Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

(1) A is invertible
(2) T is invertible
(3) The reduced row echelon form of A is I_n
(4) A has n pivots
(5) $Ax = 0$ has only 0 solution
(6) $\text{Nul}(A) = \{0\}$
(7) $\text{nullity}(A) = 0$
(8) columns of A are linearly independent
(9) columns of A form a basis for \mathbb{R}^n
(10) T is one-to-one
(11) $Ax = b$ is consistent for all b in \mathbb{R}^n
(12) $Ax = b$ has a unique solution for all b in \mathbb{R}^n
(13) columns of A span \mathbb{R}^n
(14) $\text{Col}(A) = \mathbb{R}^n$
(15) rank$(A) = n$
(16) T is onto
(17) A has a left inverse
(18) A has a right inverse
The Invertible Matrix Theorem

There are two kinds of square matrices, invertible and non-invertible matrices.

For invertible matrices, all of the conditions in the IMT hold. And for a non-invertible matrix, all of them fail to hold.

One way to think about the theorem is: there are lots of conditions equivalent to a matrix having a pivot in every row, and lots of conditions equivalent to a matrix having a pivot in every column, and when the matrix is a square, all of these many conditions become equivalent.
Example

Determine whether A is invertible. $A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix}$

It isn't necessary to find the inverse. Instead, we may use the Invertible Matrix Theorem by checking whether we can row reduce to obtain three pivot columns, or three pivot positions.

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}$$

There are three pivot positions, so A is invertible by the IMT (statement c).
The Invertible Matrix Theorem

Poll

Which are true? Why?

m) If A is invertible then the rows of A span \mathbb{R}^n

n) If $Ax = b$ has exactly one solution for all b in \mathbb{R}^n then A is row equivalent to the identity.

o) If A is invertible then A^2 is invertible

p) If A^2 is invertible then A is invertible
Some sample Yes/No questions

In all questions, suppose that A is an $n \times n$ matrix and that $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the associated linear transformation.

(1) Suppose that the reduced row echelon form of A does not have any zero rows. Must it be true that $Ax = b$ is consistent for all b in \mathbb{R}^n?

YES NO

(2) Suppose that T is one-to-one. Is it possible that the columns of A add up to zero?

YES NO

(3) Suppose that $Ax = e_1$ is not consistent. Is it possible that T is onto?

YES NO
Summary of Section 3.6

• Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.

 (1) A is invertible
 (2) T is invertible
 (3) The reduced row echelon form of A is I_n
 (4) etc.
Where are we?

- We have studied the problem $Ax = b$
- We next want to study $Ax = \lambda x$
- At the end of the course we want to almost solve $Ax = b$

We need determinants for the second item.
Sections 4.1 and 4.3

The definition of the determinant and volumes
Outline of Sections 4.1 and 4.3

- Volume and invertibility
- A definition of determinant in terms of row operations
- Using the definition of determinant to compute the determinant
- Determinants of products: $\text{det}(AB)$
- Determinants and linear transformations and volumes
Invertibility and volume

When is a 2×2 matrix invertible?

When the rows (or columns) don't lie on a line \Leftrightarrow the corresponding parallelogram has non-zero area.

When is a 3×3 matrix invertible?

When the rows (or columns) don't lie on a plane \Leftrightarrow the corresponding parallelepiped (3D parallelogram) has non-zero volume.

Same for $n \times n$!
The definition of determinant

The determinant of a square matrix is a number so that

1. If we do a row replacement on a matrix, the determinant is unchanged
2. If we swap two rows of a matrix, the determinant scales by -1
3. If we scale a row of a matrix by k, the determinant scales by k
4. $\det(I_n) = 1$

Why would we think of this? Answer: This is exactly how volume works.

Try it out for 2×2 matrices.
The definition of determinant

The **determinant** of a *square* matrix is a number so that

1. If we do a row replacement on a matrix, the determinant is unchanged
2. If we swap two rows of a matrix, the determinant scales by -1
3. If we scale a row of a matrix by k, the determinant scales by k
4. $\text{det}(I_n) = 1$

Problem. Just using these rules, compute the determinants:

\[
\begin{pmatrix}
1 & 0 & 8 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 17 & 0 \\
0 & 0 & 1
\end{pmatrix}
\quad \begin{pmatrix}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{pmatrix}
\]
A basic fact about determinants

Fact. If A has a zero row, then $\det(A) = 0$.

Why does this follow from the definition?
A first formula for the determinant

Fact. Suppose we row reduce A. Then

$$\det A = (-1)^{\#\text{row swaps used}} \cdot \left(\frac{\text{product of diagonal entries of row reduced matrix}}{\text{product of scalings used}} \right)$$

What is the determinant of a matrix in row echelon form?

Use the fact to get a formula for the determinant of any 2×2 matrix.

Consequence of the above fact:

Fact. $\det A \neq 0 \iff A$ invertible
Computing determinants
...using the definition in terms of row operations

\[
\begin{vmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
5 & 7 & -4
\end{vmatrix} =
\]
A Mathematical Conundrum

We have this definition of a determinant, and it gives us a way to compute it.

But: we don’t know that such a determinant function exists.

More specifically, we haven’t ruled out the possibility that two different row reductions might gives us two different answers for the determinant.

Don’t worry! It is all okay.

We already gave the key idea: that determinant is just the volume of the corresponding parallelepiped. You can read the proof in the book if you want.

Fact 1. There is such a number \det and it is unique.
Properties of the determinant

Fact 1. There is such a number \(\det \) and it is unique.

Fact 2. \(A \) is invertible \(\iff \det(A) \neq 0 \) \hspace{1cm} \text{important!}

Fact 3. \(\det A = (-1)^{\# \text{row swaps used}} \left(\frac{\text{product of diagonal entries of row reduced matrix}}{\text{product of scalings used}} \right) \)

Fact 4. The function can be computed by any of the \(2n \) cofactor expansions.

Fact 5. \(\det(AB) = \det(A) \det(B) \) \hspace{1cm} \text{important!}

Fact 6. \(\det(A^T) = \det(A) \) \hspace{1cm} \text{ok, now we need to say what transpose is}

Fact 7. \(\det(A) \) is signed volume of the parallelepiped spanned by cols of \(A \).

If you want the proofs, see the book. Actually Fact 1 is the hardest!
Powers

Fact 5. \[\det(AB) = \det(A)\det(B) \]

Use this fact to compute

\[\det \left(\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 5 & 7 & -4 \end{pmatrix}^5 \right) \]

What is \(\det(A^{-1}) \)?
Suppose we know A^5 is invertible. Is A invertible?

1. yes
2. no
3. maybe
Areas of triangles

What is the area of the triangle in \mathbb{R}^2 with vertices $(1, 2)$, $(4, 3)$, and $(2, 5)$?

What is the area of the parallelogram in \mathbb{R}^2 with vertices $(1, 2)$, $(4, 3)$, $(2, 5)$, and $(5, 6)$?
Determinants and linear transformations

Say A is an $n \times n$ matrix and $T(v) = Av$.

Fact 8. If S is some subset of \mathbb{R}^n, then $\text{vol}(T(S)) = |\det(A)| \cdot \text{vol}(S)$.

This works even if S is curvy, like a circle or an ellipse, or:

Why? First check it for little squares/cubes (Fact 7). Then: Calculus!
Summary of Sections 4.1 and 4.3

Say \(\text{det} \) is a function \(\text{det} : \{\text{matrices}\} \rightarrow \mathbb{R} \) with:

1. \(\text{det}(I_n) = 1 \)
2. If we do a row replacement on a matrix, the determinant is unchanged
3. If we swap two rows of a matrix, the determinant scales by \(-1\)
4. If we scale a row of a matrix by \(k\), the determinant scales by \(k\)

Fact 1. There is such a function \(\text{det} \) and it is unique.

Fact 2. \(A \) is invertible \(\iff \text{det}(A) \neq 0 \) important!

Fact 3. \(\text{det} A = (-1)^{\# \text{row swaps used}} \left(\frac{\text{product of diagonal entries of row reduced matrix}}{\text{product of scalings used}} \right) \)

Fact 4. The function can be computed by any of the \(2n\) cofactor expansions.

Fact 5. \(\text{det}(AB) = \text{det}(A) \text{det}(B) \) important!

Fact 6. \(\text{det}(A^T) = \text{det}(A) \)

Fact 7. \(\text{det}(A) \) is signed volume of the parallelepiped spanned by cols of \(A \).

Fact 8. If \(S \) is some subset of \(\mathbb{R}^n \), then \(\text{vol}(T(S)) = |\text{det}(A)| \cdot \text{vol}(S) \).