Announcements Jan 8

- Mathematical autobiography due on Friday
- WeBWorK Warmup due Friday (not for a grade)
- Download the Piazza app
- My office hours today 2-3 and Monday 3-4 in Skiles 234

▲□▶▲□▶▲□▶▲□▶ □ ● のへの

- Studio on Friday: same time, different room, with TA
- Remember the laptop rules

Section 1.1

Solving systems of equations

Outline of Section 1.1

- Learn what it means to solve a system of linear equations
- Describe the solutions as points in \mathbb{R}^n
- Learn what it means for a system of linear equations to be inconsistent

Solving equations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solving equations

What does it mean to solve an equation?

$$2x = 10$$
 A soln: $\chi = 5$

$$x + y = 1$$
Solves: $X = 1, y = 0$

$$X = 0, y = 1$$

$$x + y + z = 0$$
Solves: $X = y = 7 = 0$...

Find one solution to each. Can you find all of them?

A solution is a *list* of numbers. For example (3, -4, 1).

・ロト・日下・日下・日、 「」 シット

Solving equations

What does it mean to solve a system of equations?

What about... $\begin{array}{c} x+y+z=3\\ x+y-z=1\\ x-y+z=1 \end{array}$ Yes no 3 eqn. Is (1,1,1) a solution? Is (2,0,1) a solution? What are all the solutions?

Soon, you will be able to see just by looking that there is exactly one solution.

< ロ > < 回 > < 三 > < 三 > < 三 > < つ < ??

 $\mathbb{R} =$ denotes the set of all real numbers

Geometrically, this is the number line.

 \mathbb{R}^n = all ordered *n*-tuples (or lists) of real numbers $(x_1, x_2, x_3, \dots, x_n)$ Solutions to systems of equations are exactly points in \mathbb{R}^n .

A point in
$$\mathbb{R}^2$$
:
(1,1) or ($\mathfrak{N}, \mathbb{Y}_{2+e}$)

▲□▶▲□▶▲□▶▲□▶ □ りへ?

\mathbb{R}^n When n = 2, we can visualize of \mathbb{R}^2 as the *plane*.

 \mathbb{R}^n

When n = 3, we can visualize \mathbb{R}^3 as the *space* we (appear to) live in.

・ロト <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 = <
日 =

 \mathbb{R}^{n}

We can think of the space of all *colors* as (a subset of) \mathbb{R}^3 :

So what is \mathbb{R}^4 ? or \mathbb{R}^5 ? or \mathbb{R}^n ?

 \ldots go back to the *definition*: ordered *n*-tuples of real numbers

 $(x_1, x_2, x_3, \ldots, x_n).$

They're still "geometric" spaces, in the sense that our intuition for \mathbb{R}^2 and \mathbb{R}^3 sometimes extends to \mathbb{R}^n , but they're harder to visualize.

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<

Last time we could have used \mathbb{R}^4 to label the amount of traffic (x, y, z, w) passing through four streets.

We'll make definitions and state theorems that apply to any \mathbb{R}^n , but we'll only draw pictures in \mathbb{R}^2 and \mathbb{R}^3 .

・ロト・日本・ キャー ほう

DQC

 \mathbb{R}^n and QR codes

This is a 21×21 QR code. We can also think of this as an element of \mathbb{R}^n .

١

DQA

How? Which n?

What about a greyscale image?

This is a powerful idea: instead of thinking of a QR code as 441 pieces of information, we think of it as one piece of information.

Visualizing solutions: a preview

・ロト・日本・日本・日本・日本・日本

One Linear Equation

What does the solution set of a linear equation look like?

 $x + y = 1 \xrightarrow{} x = 1 - x$

One Linear Equation

What does the solution set of a linear equation look like?

・ロア・雪ア・ボディ 同

DQC

 $x + y + z = 1 \xrightarrow{\text{orred}} a$ plane in space:

One Linear Equation

Continued

What does the solution set of a linear equation look like?

 $x + y + z + w = 1 \xrightarrow{\qquad } a$ "3-plane" in "4-space"...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□▶

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 り へ ()

What are the other possibilities for two equations with two variables?

What if there are more variables? More equations?

Consistent versus Inconsistent

We say that a system of linear equations is consistent if it has a solution and inconsistent otherwise.

What are other examples of inconsistent systems of linear equations?

▲□▶▲□▶▲□▶▲□▶ = のへで

Parametric form

The equation y = 1 - x is an implicit equation for the line in the picture.

▲ロ > ▲ □ > ▲ □ > ▲ □ > ■

DQC

Similarly the equation x + y + z = 1 is an implicit equation. One parametric form is: (t, w, 1 - t - w).

Parametric form

The equation y = 1 - x is an implicit equation for the line in the picture.

・ロト・日本・ キャー ほう

DQQ

Similarly the equation x + y + z = 1 is an implicit equation. One parametric form is: (t, w, 1 - t - w).

$$\begin{split} & \mathsf{Imp}: \ \mathbf{Z} = \mathbf{0} \\ & \mathsf{Param}: \ (\mathtt{t}, \omega, \mathbf{0}) \\ & \mathsf{What} \text{ is an implicit equation and a parametric form for the xy-plane in \mathbb{R}^3?} \end{split}$$

Summary of Section 1.1

- A solution to a system of linear equations in n variables is a point in \mathbb{R}^n .
- The set of all solutions to a single equation in n variables is an (n-1)-dimensional plane in \mathbb{R}^n
- The set of solutions to a system of m linear equations in n variables is the intersection of m of these (n − 1)-dimensional planes in ℝⁿ.

- A system of equations with no solutions is said to be inconsistent.
- Line and planes have implicit equations and parametric forms.