Announcements Jan 29

- Midterm 1 on Feb 7
- WeBWorK 2.1 & 2.2 due Thursday
- Quiz on 2.1 & 2.2 in studio on Friday
- My office hours Monday 3-4 and Wed 2-3
- TA office hours in Skiles 230 (you can go to any of these!)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Isabella Thu 2-3
- Kyle Thu 1-3
- Kalen Mon/Wed 1-1:50
- Sidhanth Tue 10:45-11:45
- PLUS sessions Mon/Wed 6-7 LLC West with Miguel
- Supplemental problems on the master web site

Section 2.4

Solution Sets

・ロト・日本</

Outline

• Understand the geometric relationship between the solutions to Ax=b and Ax=0

・ロト
 ・ヨト
 ・ヨト
 ・ヨト
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 <l

- Understand the relationship between solutions to Ax = b and spans
- Learn the parametric vector form for solutions to Ax = b

Homogeneous systems

Solving Ax = b is easiest when b = 0.

Homogeneous systems \leftrightarrow matrix equations Ax = 0.

Homogenous systems are always consistent. Why?

When does Ax = 0 have a nonzero/nontrivial solution?

If there are k-free variables and n total variables, then the solution is a k-dimensional plane through the origin in \mathbb{R}^n . In particular it is a span.

Parametric Vector Forms for Solutions Homogeneous case

Solve the matrix equation Ax = 0 where

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We already know the parametric form:

$$x_{1} = 8x_{3} + 7x_{4} \qquad \begin{pmatrix} 8_{x_{3}} + 7x_{4}, -4x_{3}, -3x_{4}, x_{3}, x_{4} \end{pmatrix}$$

$$x_{2} = -4x_{3} - 3x_{4} \qquad \begin{pmatrix} 8_{x_{3}} + 7x_{4}, -4x_{3}, -3x_{4}, x_{3}, x_{4} \end{pmatrix}$$

$$x_{3} = x_{3} \qquad \text{(free)}$$

$$x_{4} = x_{4} \qquad \text{(free)}$$

We can also write this in parametric vector form:

$$x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$

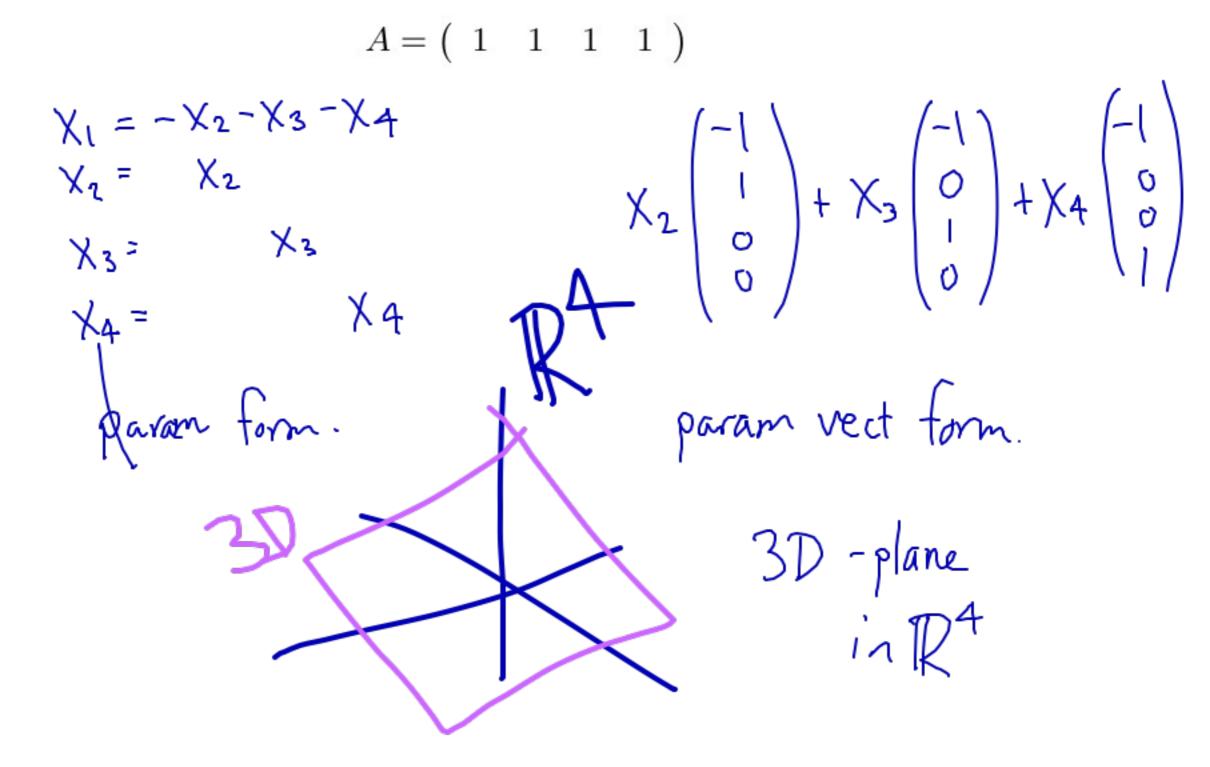
Or we can write the solution as a span: $Span\{(8, -4, 1, 0), (7, -3, 0, 1)\}$.

▲□▶▲□▶▲□▶▲□▶ □ りへ(~

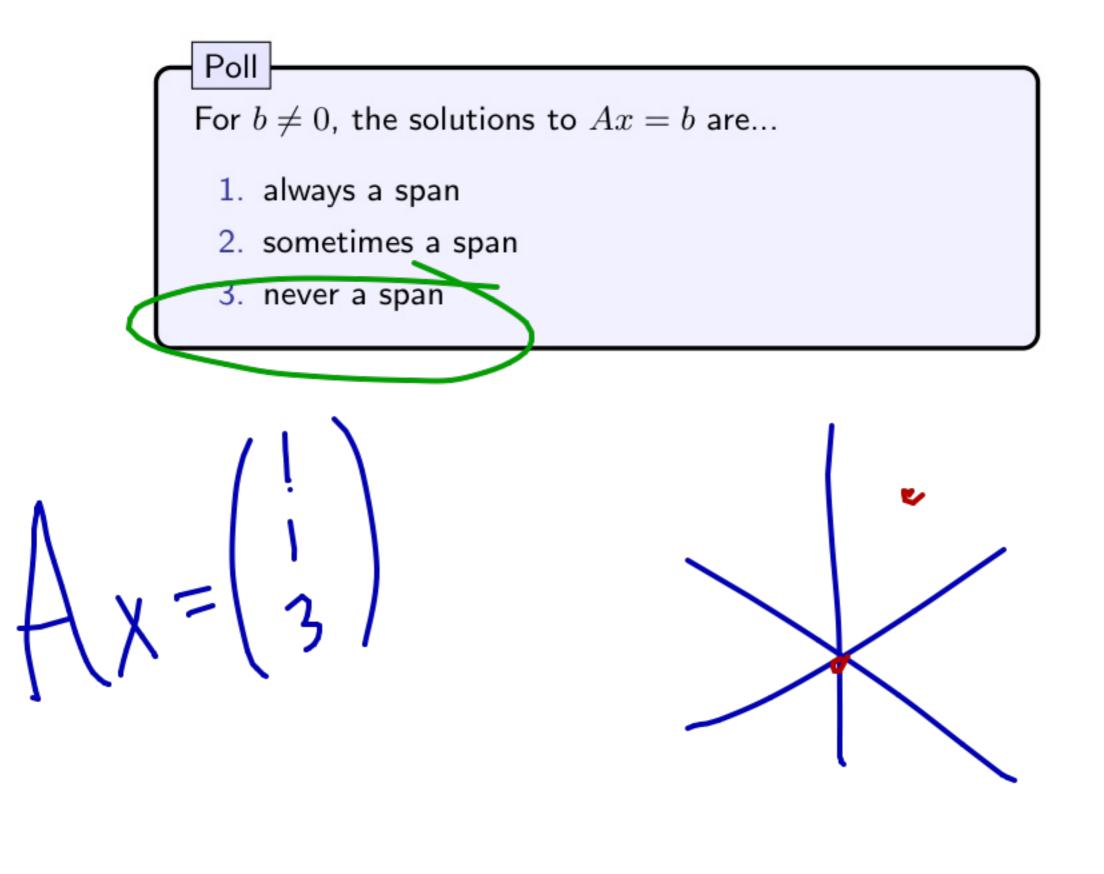
Parametric Vector Forms for Solutions

Homogeneous case

Find the parametric vector form of the solution to Ax = 0 where



Variables, equations, and dimension



▲□▶▲□▶▲□▶▲□▶ ● のへの

Nonhomogeneous Systems

Suppose Ax = b, and $b \neq 0$.

As before, we can find the parametric vector form for the solution in terms of free variables.

What is the difference?

Parametric Vector Forms for Solutions

Nonhomogeneous case

Find the parametric vector form of the solution to Ax = b where:

$$(A|b) = \begin{pmatrix} 1 & 2 & 0 & -1 & | & 3 \\ -2 & -3 & 4 & 5 & | & 2 \\ 2 & 4 & 0 & -2 & | & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -8 & -7 & | & -13 \\ 0 & 1 & 4 & 3 & | & 8 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We already know the parametric form:

$$x_{1} = -13 + 8x_{3} + 7x_{4}$$

$$x_{2} = 8 - 4x_{3} - 3x_{4}$$

$$x_{3} = x_{3} \quad \text{(free)}$$

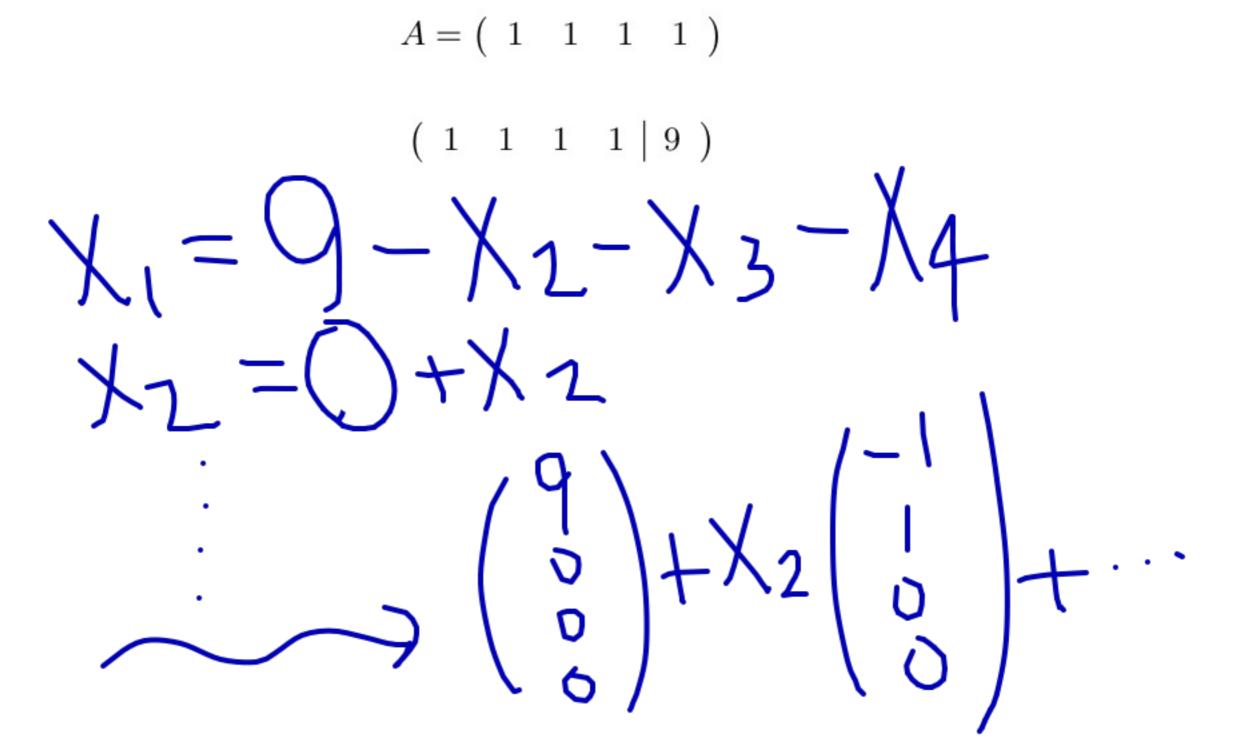
$$x_{4} = x_{4} \quad \text{(free)}$$
s in parametric vector form:

We can also write this in parametric vector form:

Parametric Vector Forms for Solutions

Nonhomogeneous case

Find the parametric vector form for the solution to Ax = (9) where



Homogeneous vs. Nonhomogeneous Systems

Key realization. Set of solutions to Ax = b obtained by taking one solution and adding all possible solutions to Ax = 0.

Ax = 0 solutions $\rightsquigarrow Ax = b$ solutions

$$x_k v_k + \dots + x_n v_n \rightsquigarrow p + x_k v_k + \dots + x_n v_n$$

So: set of solutions to Ax = b is parallel to the set of solutions to Ax = 0.

So by understanding Ax = 0 we gain understanding of Ax = b for all b. This gives structure to the set of equations Ax = b for all b.

Two different things

Suppose A is an $m \times n$ matrix. Notice that if Ax = b is a matrix equation then x is in \mathbb{R}^n and b is in \mathbb{R}^m . There are two different problems to solve.

1. If we are given a specific b, then we can solve Ax = b. This means we find all x in \mathbb{R}^n so that Ax = b. We do this by row reducing, taking free variables for the columns without pivots, and writing the (parametric) vector form for the solution.

2. We can also ask for which b in \mathbb{R}^m does Ax = b have a solution? The answer is: when b is in the span of the columns of A. So the answer is "all b in \mathbb{R}^m " exactly when the span of the columns is \mathbb{R}^m which is exactly when A has m pivots.

If you go back to the <u>Pemo</u> from earlier in this section, the first question is happening on the left and the second question on the right.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary of Section 2.4

- The solutions to Ax = 0 form a plane through the origin (span)
- The solutions to Ax = b form a plane not through the origin
- The set of solutions to Ax = b is parallel to the one for Ax = 0
- In either case we can write the parametric vector form. The parametric vector form for the solution to Ax = 0 is obtained from the one for Ax = b by deleting the constant vector. And conversely the parametric vector form for Ax = b is obtained from the one for Ax = 0 by adding a constant vector. This vector translates the solution set.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • ੭ < ♡

Section 2.5 Linear Independence

・ロト・日本</

Section 2.5 Outline

- Understand what is means for a set of vectors to be linearly independent
- Understand how to check if a set of vectors is linearly independent

Basic question: What is the smallest number of vectors needed in the parametric solution to a linear system?

A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

has only the trivial solution. It is linearly dependent otherwise. 72.00

So, linearly dependent means there are x_1, x_2, \ldots, x_k not all zero so that

$$x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$$

This is a *linear dependence* relation.

A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$

▲□▶▲□▶▲■▶▲■▶ ▲ ■ シタペ

has only the trivial solution.

Fact. The cols of A are linearly independent $\Leftrightarrow Ax = 0$ has only the trivial solution. $\Leftrightarrow A$ has a pivot in each column

Why?

$$Is \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\} \text{ linearly independent?}$$

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \\ -2 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\} \text{ linearly independent?}$$

$$Is \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\} \text{ linearly independent?}$$

$$\left\{ \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\} \text{ linearly independent?}$$

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right\} \text{ linearly independent?}$$

```
When is \{v\} is linearly dependent?
```

```
When is \{v_1, v_2\} is linearly dependent?
```

When is the set $\{v_1, v_2, \ldots, v_k\}$ linearly dependent?

Fact. The set $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent if and only if we can remove a vector from the set without changing the dimension of the span.

Fact. The set $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent if and only if some v_i lies in the span of v_1, \ldots, v_{i-1} .

Span and Linear Independence

Is
$$\left\{ \begin{pmatrix} 5\\7\\0 \end{pmatrix}, \begin{pmatrix} -5\\7\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\4 \end{pmatrix} \right\}$$
 linearly independent?

▲□▶▲□▶▲□▶▲□▶ ■ めのの

Linear independence and free variables

Theorem. Let v_1, \ldots, v_k be vectors in \mathbb{R}^n and consider the vector equation

 $x_1v_1 + \dots + x_kv_k = 0.$

The set of vectors corresponding to non-free variables are linearly independent.

So if we put the v_i as the columns of a matrix, the number of pivots is the dimension of the span. Actually, the columns of the *original matrix* corresponding to the pivots are linear independent.

Linear independence and coordinates

Theorem. If v_1, \ldots, v_k are linearly independent vectors then we can write each element of

 $\operatorname{Span}\{v_1,\ldots,v_k\}$

in exactly one way as a linear combination of v_1, \ldots, v_k .

More on this later, when we get to bases.

Span and Linear Independence

Two More Facts

Fact 1. Say v_1, \ldots, v_k are in \mathbb{R}^n . If k > n, then $\{v_1, \ldots, v_k\}$ is linearly dependent.

Fact 2. If one of v_1, \ldots, v_k is 0, then $\{v_1, \ldots, v_k\}$ is linearly dependent.

Summary of Section 2.5

• A set of vectors $\{v_1, \ldots, v_k\}$ in \mathbb{R}^n is linearly independent if the vector equation

 $x_1v_1 + x_2v_2 + \dots + x_kv_k = 0$

has only the trivial solution. It is linearly dependent otherwise.

- The cols of A are linearly independent
 - $\Leftrightarrow Ax = 0$ has only the trivial solution.
 - $\Leftrightarrow A$ has a pivot in each column
- The number of pivots of A equals the dimension of the span of the columns of A
- The set $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent if and only if some v_i lies in the span of v_1, \ldots, v_{i-1} .