Announcements Mar 23

- Class participation is optional for the rest of the semester. Future Piazza polls will not count for the grade.
- Revised schedule is pushed back one week, with some material abridged. The new schedule will be released March 30.
- Midterm 3 on April 17
- WeBWorK on Chapter 4 due today. WeBWorK 5.1 due Thu April 2.
- Practice quiz this week on Canvas. It will be open Mon at 5 to Wed at 5. You have 25 minutes once you start. It is not for a grade.
- Official quiz next Friday on Canvas. It will be open all day Friday, but there will be a time limit.
- My office hours Monday 3-4 and Wed 2-3 on Blue Jeans
- TA office hours on Blue Jeans (you can go to any of these!)
 - Isabella Mon 4-5, Wed 11-12
 - Kyle Wed 3-6, Thu 1-4
 - Kalen Mon/Wed 1-2
 - Sidhanth Tue 10-12
- Supplemental problems and practice exams on the master web site

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Lights Out

An application of linear algebra to something important

Lights Out

When you click on a light, it toggles that light and the 4 lights immediately adjacent. If the light is on the edge, then there are only 3 adjacent lights. If the light is on the corner, there are only 2 adjacent lights. The goal is to turn all the lights off.

If you click on the center square, it changes the first configuration to the second (and vice versa!).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Modular arithmetic

aka Clock arithmetic

You are used to clock arithmetic: 10 + 4 = 2, 7 + 6 = 1, 7 - 6 = 1, etc.

Clock arithmetic is called mod 12 arithmetic. In mod 5 arithmetic, the numbers are 0, 1, 2, 3, 4, and we can write 4 + 2 = 1, 3 - 4 = 4, 3 + 2 = 0, etc.

For Lights Out, you use the simplest version, mod 2 arithmetic. There are two numbers, $\boldsymbol{0}$ and $\boldsymbol{1},$ and

0 + 0 = 00 + 1 = 11 + 0 = 11 + 1 = 0

Those are all the ways of adding two numbers in mod 2 arithmetic. Also, you don't need minus signs since -0 = 0 and -1 = 1.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Mod 2 linear algebra

It turns out that all of linear algebra works with mod 2 arithmetic. Consider the following system of equations:

$$\begin{aligned} x + y &= 1 \\ y + z &= 1 \\ x + y + z &= 0 \end{aligned} \\ \left(\begin{array}{ccc} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 1 & 1 & 1 & | & 0 \end{array} \right) \end{aligned}$$

Let's make a matrix:

Try row reducing and solving!

Mod 2 linear algebra

Here is the row reduction

$$\begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 1 & 1 & 1 & | & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 0 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$
$$\rightsquigarrow \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{pmatrix}$$

There is no pivot in the last column, so the system is consistent. There is a pivot in each column, so there is a unique solution:

$$x = 1, y = 0, z = 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lights out Target vectors

What does this have to do with lights out? In the $n \times n$ version, you can think of a configuration of lights as a vector that has n^2 entries, and with each entry being a 0 or a 1. This is the target vector.

What is the target vector for this 3×3 game?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lights out Target vectors

What is the target vector for this 3×3 game?

Answer:

	$\begin{pmatrix} 0 \end{pmatrix}$		$\left(\begin{array}{c} \text{top left} \end{array} \right)$	
	1		top middle	
	0		top right	
	0		middle left	
b =	1	=	middle middle	
	0		middle right	
	0		bottom left	
	1		bottom middle	
	$\left(1 \right)$		bottom right	
	. ,		・	۹۵

What is the target vector for this 3×3 game?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Lights out Target vectors

What is the target vector for this 3×3 game?

Answer:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lights out Toggle vectors

Each time you press a button, you are adding a vector to the starting vector. The vector you are adding has 3, 4, or 5 entries equal to 1, and the other entries are equal to 0 (the ones are for the lights getting toggled). There are n^2 such toggle vectors in the $n \times n$ game, since you can click in n^2 places. Each vector has n^2 entries.

What is the toggle vector for clicking on the top left corner?

A D N A 目 N A E N A E N A B N A C N

What is the toggle vector for clicking on the top left corner?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Answer:

$$c_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Lights out

When you click on a square in the game, you are adding a toggle vector c_i to the target vector b. You can add as many c_i as you want. The goal is to get 0.

So the whole game boils down to:

Find a linear combination of the toggle vectors c_i that equals the target vector b.

See if you can solve this lights out game using linear algebra.

You are solving Ax = b where the columns of A are the toggle vectors (so it is a 9×9 matrix) and b is the target vector (1, 1, 1, 1, 1, 1, 1, 1, 1) given above.

Lights out

See if you can solve this lights out game using linear algebra.

You are solving Ax = b where the columns of A are the toggle vectors (so it is a 9×9 matrix) and b is the target vector (1, 1, 1, 1, 1, 1, 1, 1, 1) given above.

The solution is:

 $x = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

 Lights out

Here is another one to try.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Challenge questions

Question. Is every lights out game solvable? If there a configuration of lights that cannot be turned off? What is the answer for the 3×3 game? 5×5 ? What about $n \times n$?

Question. Write computer code to solve any Lights Out game.

Question. Come up with an alternate version of the game. (Code it!) Is your version of the game always solvable?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Come up with your own questions!