Announcements Mar 4

- Midterm 2 on Friday
- WeBWorK 3.4, 3.5, and 3.6 due Thursday
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- Review sessions
 - Kalen 7 pm Thu online
 - Sidhanth 7 pm tonite
- PLUS session with Miguel tonight 5-7
- Supplemental problems and practice exams on the master web site

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Review for Midterm 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Section 2.6 Summary

- A subspace of \mathbb{R}^n is a subset V with:
 - 1. The zero vector is in V.
 - 2. If u and v are in V, then u + v is also in V.
 - 3. If u is in V and c is in \mathbb{R} , then $cu \in V$.
- Two important subspaces: Nul(A) and Col(A)
- Find a spanning set for $\operatorname{Nul}(A)$ by solving Ax=0 in vector parametric form
- Find a spanning set for $\operatorname{Col}(A)$ by taking pivot columns of A (not reduced A)
- Four things are the same: subspaces, spans, planes through 0, null spaces

Let V be the subset of \mathbb{R}^3 consisting of the x-axis, the y-axis, and the z-axis. Which properties of a subspace does V fail?

Find a spanning set for the plane in \mathbb{R}^3 defined by x + y - 2z = 0.

・ロト・西ト・モン・モー シック

Section 2.7 Summary

• A basis for a subspace V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$V = \mathsf{Span}\{v_1, \ldots, v_k\}$$

- 2. v_1, \ldots, v_k are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for Nul(A) by solving Ax = 0 in vector parametric form
- Find a basis for Col(A) by taking pivot columns of A (not reduced A)
- Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

- Any k linearly independent vectors in V form a basis for V.
- Any k vectors in V that span V form a basis.

Find a basis $\{u, v, w\}$ for \mathbb{R}^3 where no vector has a zero entry.

Section 2.9 Summary

• Rank-Nullity Theorem. $rank(A) + \dim Nul(A) = \#cols(A)$

Let A be an 4×6 nonzero matrix and suppose the columns of A are all the same. What is $\dim {\rm Nul}(A)?$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Section 3.1 Summary

- If A is an m×n matrix, then the associated matrix transformation T is given by T(v) = Av. This is a function with domain ℝⁿ and codomain ℝ^m and range Col(A).
- If A is $n \times n$ then T does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

Find a matrix A so that the range of the matrix transformation T(v) = Av is the line y = 2x in \mathbb{R}^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is one-to-one
 - the columns of A are
 - Ax = 0 has
 - A has a pivot
 - the range has dimension n
- $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^m .
- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is onto
 - the columns of A
 - A has a pivot
 - Ax = b is consistent
 - \blacktriangleright the range of T has dimension m

Let A be an 5×5 matrix. Suppose that dim Nul(A) = 0. Must it be true that $Ax = e_1$ is consistent?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear if
 - T(u+v) = T(u) + T(v) for all u, v in \mathbb{R}^n .
 - T(cv) = cT(v) for all $v \in \mathbb{R}^n$ and c in \mathbb{R} .
- **Theorem.** Every linear transformation is a matrix transformation (and vice versa).
- The standard matrix for a linear transformation has its ith column equal to $T(e_i)$.

Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that reflects over the line y = -x and then rotates counterclockwise by $\pi/2$.

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- The standard matrix for a composition of linear transformations is the product of the standard matrices.

- Warning!
 - AB is not always equal to BA
 - AB = AC does not mean that B = C
 - AB = 0 does not mean that A or B is 0

Find a 2×2 matrix A, not equal to I, with $A^4 = I$.

• A is invertible if there is a matrix B (called the inverse) with

$$AB = BA = I_n$$

• For a 2×2 matrix A we have that A is invertible exactly when $\det(A)\neq 0$ and in this case

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• If A is invertible, then Ax = b has exactly one solution: $x = A^{-1}b$.

•
$$(A^{-1})^{-1} = A$$
 and $(AB)^{-1} = B^{-1}A^{-1}$

- Recipe for finding inverse: row reduce $(A | I_n)$.
- Invertible linear transformations correspond to invertible matrices.

Find the inverse of the matrix

$$\left(\begin{array}{rrrr} 1 & 0 & h \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- Say $A = n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.
 - (1) A is invertible
 - (2) T is invertible
 - (3) The reduced row echelon form of A is I_n
 - (4) etc.

In all questions, suppose that A is an $n\times n$ matrix and that $T:\mathbb{R}^n\to\mathbb{R}^n$ is the associated linear transformation.

(1) Suppose that the reduced row echelon form of A does not have any zero rows. Must it be true that Ax = b is consistent for all b in \mathbb{R}^n ?

YES NO

(2) Suppose that T is one-to-one. Is is possible that the columns of A add up to zero?

YES NO

(3) Suppose that $Ax = e_1$ is not consistent. Is it possible that T is onto?

Important terms

- subspace
- column space
- null space
- basis
- dimension
- one-to-one
- onto
- linear transformation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- inverse
- Rank theorem

Good luck!

