Announcements Mar 4

- Midterm 2 on Friday
- WeBWorK 3.4, 3.5, and 3.6 due Thursday
- TA office hours in Skiles 230 (you can go to any of these!)
	- \blacktriangleright Isabella Thu 2-3
	- \blacktriangleright Kyle Thu 1-3
	- \blacktriangleright Kalen Mon/Wed 1-1:50
	- \triangleright Sidhanth Tue 10:45-11:45
- Review sessions
	- \blacktriangleright Kalen 7 pm Thu online
	- \blacktriangleright Sidhanth 7 pm tonite
- PLUS session with Miguel tonight 5-7
- Supplemental problems and practice exams on the master web site

KORK ERKER ADA ADA KORA

Review for Midterm 2

K ロ K K d K K B K K B K X B K Y Q Q Q

Section 2.6 Summary

- A subspace of \mathbb{R}^n is a subset V with:
	- 1. The zero vector is in V
	- 2. If u and v are in V, then $u + v$ is also in V.
	- 3. If u is in V and c is in $\mathbb R$, then $cu \in V$.
- Two important subspaces: $\text{Nul}(A)$ and $\text{Col}(A)$
- Find a spanning set for $\text{Nul}(A)$ by solving $Ax = 0$ in vector parametric form
- Find a spanning set for $Col(A)$ by taking pivot columns of A (not reduced A)
- Four things are the same: subspaces, spans, planes through 0, null spaces

Let V be the subset of \mathbb{R}^3 consisting of the x -axis, the y -axis, and the z -axis. Which properties of a subspace does V fail?

Find a spanning set for the plane in \mathbb{R}^3 defined by $x + y - 2z = 0$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Section 2.7 Summary

• A basis for a subspace V is a set of vectors $\{v_1, v_2, \ldots, v_k\}$ such that

1.
$$
V = \mathsf{Span}\{v_1, \ldots, v_k\}
$$

- $2. \, v_1, \ldots, v_k$ are linearly independent
- The number of vectors in a basis for a subspace is the dimension.
- Find a basis for $\text{Nul}(A)$ by solving $Ax = 0$ in vector parametric form
- Find a basis for $Col(A)$ by taking pivot columns of A (not reduced A)
- Basis Theorem. Suppose V is a k-dimensional subspace of \mathbb{R}^n . Then

KORKARYKERKER POLO

- Any k linearly independent vectors in V form a basis for V .
- Any k vectors in V that span V form a basis.

Find a basis $\{u, v, w\}$ for \mathbb{R}^3 where no vector has a zero entry.

Section 2.9 Summary

• Rank-Nullity Theorem. $\operatorname{rank}(A) + \dim \operatorname{Nul}(A) = \# \operatorname{cols}(A)$

Let A be an 4×6 nonzero matrix and suppose the columns of A are all the same. What is $\dim \mathrm{Nul}(A)$?

KO K K Ø K K E K K E K V K K K K K K K K K

Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\text{Col}(A)$.
- If A is $n \times n$ then T does something to \mathbb{R}^n ; basic examples: reflection, projection, scaling, shear, rotation

Find a matrix A so that the range of the matrix transformation $T(v) = Av$ is the line $y = 2x$ in \mathbb{R}^2 .

KORKARYKERKER POLO

- $\;\;\bullet\;\; T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n .
- \bullet Theorem. Suppose $T:\mathbb{R}^n\to\mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
	- \blacktriangleright T is one-to-one
	- \blacktriangleright the columns of A are
	- $A x = 0$ has
	- \blacktriangleright A has a pivot
	- \blacktriangleright the range has dimension n
- \bullet $T:\mathbb{R}^n\to\mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m , that is, each b in \mathbb{R}^m is the output for at least one input v in $\mathbb{R}^m.$
- Theorem. Suppose $T:\mathbb{R}^n\to\mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
	- \blacktriangleright T is onto
	- \blacktriangleright the columns of A
	- \blacktriangleright A has a pivot
	- $A r = h$ is consistent
	- \blacktriangleright the range of T has dimension m

Let A be an 5×5 matrix. Suppose that $\dim \text{Nul}(A) = 0$. Must it be true that $Ax = e_1$ is consistent?

KORK EXTERNE PROVIDE

- $\bullet\,$ A function $T:\mathbb{R}^n\to\mathbb{R}^m$ is linear if
	- \blacktriangleright $T(u + v) = T(u) + T(v)$ for all u, v in \mathbb{R}^n .
	- \blacktriangleright $T(cv) = cT(v)$ for all $v \in \mathbb{R}^n$ and c in \mathbb{R} .
- Theorem. Every linear transformation is a matrix transformation (and vice versa).
- The standard matrix for a linear transformation has its ith column equal to $T(e_i)$.

Find the standard matrix for the linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects over the line $y = -x$ and then rotates counterclockwise by $\pi/2$.

KORKARYKERKER POLO

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- The standard matrix for a composition of linear transformations is the product of the standard matrices.

KORKARYKERKER POLO

- Warning!
	- \blacktriangleright AB is not always equal to BA
	- $AB = AC$ does not mean that $B = C$
	- $AB = 0$ does not mean that A or B is 0

Find a 2×2 matrix A, not equal to I, with $A^4 = I$.

• A is invertible if there is a matrix B (called the inverse) with

$$
AB = BA = I_n
$$

• For a 2×2 matrix A we have that A is invertible exactly when $\det(A) \neq 0$ and in this case

$$
A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
$$

• If A is invertible, then $Ax = b$ has exactly one solution: $x = A^{-1}b$.

$$
(A^{-1})^{-1} = A
$$
 and $(AB)^{-1} = B^{-1}A^{-1}$

- Recipe for finding inverse: row reduce $(A | I_n)$.
- Invertible linear transformations correspond to invertible matrices.

Find the inverse of the matrix

$$
\left(\begin{array}{rrr} 1 & 0 & h \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)
$$

KELK KØLK VELKEN EL 1990

- $\bullet\,$ Say $A=n\times n$ matrix and $T:\mathbb{R}^n\to\mathbb{R}^n$ is the associated linear transformation. The following are equivalent.
	- (1) A is invertible
	- (2) T is invertible
	- (3) The reduced row echelon form of A is I_n
	- (4) etc.

In all questions, suppose that A is an $n \times n$ matrix and that $T: \mathbb{R}^n \to \mathbb{R}^n$ is the associated linear transformation.

(1) Suppose that the reduced row echelon form of A does not have any zero rows. Must it be true that $Ax = b$ is consistent for all b in \mathbb{R}^n ?

yes no

(2) Suppose that T is one-to-one. Is is possible that the columns of A add up to zero?

yes no

(3) Suppose that $Ax = e_1$ is not consistent. Is it possible that T is onto?

KID KA KERKER KID KO

Important terms

- subspace
- column space
- null space
- basis
- dimension
- one-to-one
- onto
- linear transformation

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- inverse
- Rank theorem

Good luck!

イロト 不優 トイミト イヨト 一番

 299