Announcements Mar 4

- Midterm 2 on Friday
- WeBWorK 3.4, 3.5, and 3.6 due Thursday
- TA office hours in Skiles 230 (you can go to any of these!)
 - Isabella Thu 2-3
 - Kyle Thu 1-3
 - Kalen Mon/Wed 1-1:50
 - Sidhanth Tue 10:45-11:45
- Review sessions
 - Kalen 7 pm Thu online
 - Sidhanth 7 pm tonight
- PLUS session with Miguel tonight 5-7
- Supplemental problems and practice exams on the master web site
Review for Midterm 2
Section 2.6 Summary

- A **subspace** of \mathbb{R}^n is a subset V with:
 1. The zero vector is in V.
 2. If u and v are in V, then $u + v$ is also in V.
 3. If u is in V and c is in \mathbb{R}, then $cu \in V$.

- Two important subspaces: $\text{Nul}(A)$ and $\text{Col}(A)$

- Find a spanning set for $\text{Nul}(A)$ by solving $Ax = 0$ in vector parametric form

- Find a spanning set for $\text{Col}(A)$ by taking pivot columns of A (not reduced A)

- Four things are the same: subspaces, spans, planes through 0, null spaces

Let V be the subset of \mathbb{R}^3 consisting of the x-axis, the y-axis, and the z-axis. Which properties of a subspace does V fail?

Find a spanning set for the plane in \mathbb{R}^3 defined by $x + y - 2z = 0$.
Section 2.7 Summary

- A basis for a subspace \(V \) is a set of vectors \(\{v_1, v_2, \ldots, v_k\} \) such that
 1. \(V = \text{Span}\{v_1, \ldots, v_k\} \)
 2. \(v_1, \ldots, v_k \) are linearly independent

- The number of vectors in a basis for a subspace is the dimension.

- Find a basis for \(\text{Nul}(A) \) by solving \(Ax = 0 \) in vector parametric form

- Find a basis for \(\text{Col}(A) \) by taking pivot columns of \(A \) (not reduced \(A \))

- Basis Theorem. Suppose \(V \) is a \(k \)-dimensional subspace of \(\mathbb{R}^n \). Then
 - Any \(k \) linearly independent vectors in \(V \) form a basis for \(V \).
 - Any \(k \) vectors in \(V \) that span \(V \) form a basis.

Find a basis \(\{u, v, w\} \) for \(\mathbb{R}^3 \) where no vector has a zero entry.
Section 2.9 Summary

- Rank-Nullity Theorem. \(\text{rank}(A) + \dim \text{Nul}(A) = \#\text{cols}(A) \)

Let \(A \) be an \(4 \times 6 \) nonzero matrix and suppose the columns of \(A \) are all the same. What is \(\dim \text{Nul}(A) \)?
Section 3.1 Summary

- If A is an $m \times n$ matrix, then the associated matrix transformation T is given by $T(v) = Av$. This is a function with domain \mathbb{R}^n and codomain \mathbb{R}^m and range $\text{Col}(A)$.

- If A is $n \times n$ then T does something to \mathbb{R}^n; basic examples: reflection, projection, scaling, shear, rotation

Find a matrix A so that the range of the matrix transformation $T(v) = Av$ is the line $y = 2x$ in \mathbb{R}^2.
Summary of Section 3.2

- $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if each b in \mathbb{R}^m is the output for at most one v in \mathbb{R}^n.

- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is one-to-one
 - the columns of A are linearly independent
 - $Ax = 0$ has only the trivial solution
 - A has a pivot
 - the range has dimension n

- $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto if the range of T equals the codomain \mathbb{R}^m, that is, each b in \mathbb{R}^m is the output for at least one input v in \mathbb{R}^n.

- **Theorem.** Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation with matrix A. Then the following are all equivalent:
 - T is onto
 - the columns of A span \mathbb{R}^m
 - A has a pivot
 - $Ax = b$ is consistent
 - the range of T has dimension m

Let A be an 5×5 matrix. Suppose that $\dim \text{Nul}(A) = 0$. Must it be true that $Ax = e_1$ is consistent?
A function \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear if
\[
\begin{align*}
\ & T(u + v) = T(u) + T(v) \quad \text{for all } u, v \in \mathbb{R}^n. \\
\ & T(cv) = cT(v) \quad \text{for all } v \in \mathbb{R}^n \text{ and } c \in \mathbb{R}.
\end{align*}
\]

Theorem. Every linear transformation is a matrix transformation (and vice versa).

The standard matrix for a linear transformation has its \(i \)th column equal to \(T(e_i) \).

Find the standard matrix for the linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) that reflects over the line \(y = -x \) and then rotates counterclockwise by \(\pi/2 \).
Summary of Section 3.4

- Composition: \((T \circ U)(v) = T(U(v))\) (do \(U\) then \(T\))
- Matrix multiplication: \((AB)_{ij} = r_i \cdot b_j\)
- Matrix multiplication: the \(i\)th column of \(AB\) is \(A(b_i)\)
- The standard matrix for a composition of linear transformations is the product of the standard matrices.
- **Warning!**
 - \(AB\) is not always equal to \(BA\)
 - \(AB = AC\) does not mean that \(B = C\)
 - \(AB = 0\) does not mean that \(A\) or \(B\) is 0

Find a \(2 \times 2\) matrix \(A\), not equal to \(I\), with \(A^4 = I\).
Summary of Section 3.5

- A is invertible if there is a matrix B (called the inverse) with
 \[AB = BA = I_n \]

- For a 2×2 matrix A we have that A is invertible exactly when $\det(A) \neq 0$ and in this case
 \[A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \]

- If A is invertible, then $Ax = b$ has exactly one solution: $x = A^{-1}b$.
- $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$
- Recipe for finding inverse: row reduce $(A | I_n)$.
- Invertible linear transformations correspond to invertible matrices.

Find the inverse of the matrix
\[
\begin{pmatrix}
1 & 0 & h \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Summary of Section 3.6

- Say $A = n \times n$ matrix and $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the associated linear transformation. The following are equivalent.
 1. A is invertible
 2. T is invertible
 3. The reduced row echelon form of A is I_n
 4. etc.

In all questions, suppose that A is an $n \times n$ matrix and that $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the associated linear transformation.

1. Suppose that the reduced row echelon form of A does not have any zero rows. Must it be true that $Ax = b$ is consistent for all b in \mathbb{R}^n?
 - YES
 - NO

2. Suppose that T is one-to-one. Is it possible that the columns of A add up to zero?
 - YES
 - NO

3. Suppose that $Ax = e_1$ is not consistent. Is it possible that T is onto?
 - YES
 - NO
Important terms

- subspace
- column space
- null space
- basis
- dimension
- one-to-one
- onto
- linear transformation
- inverse
- Rank theorem
Good luck!

It is not the mountain we conquer but ourselves.

– Edmund Hillary