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Mathematics 2602

Final Exam
Prof. Margalit
13 December 2011

1. State the principle of mathematical induction.
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‘State the definitions of eigenvalue and eigenvector.
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2. Recall that the Fibonacci numbers are defined by the recursion relation

Fn+2=Fn+l+Fn7 Fo=0, Fi=1.

Use the principle of mathematical induction to show that
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3. Solve the recurrence relation

Qp = Op-1 + 2059 + 3"

with initial conditions ay = 2 and a; = 10.
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4. Show that log(n!) = O(nlogn).
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What is the smallest number of people you would need to gather if you wanted to ensure
that at least three people have the same first and last initials (for example, three people with
the initials DM, or three people with the initials AB, etc.)? Explain your answer.
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5. A candy store has bubble gum balls in 7 colors. How many ways are there to buy 15 gum
balls if you buy at least one of each color?
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There are four committees, each with five people. For every pair of distinct committees,
there is one person that is on both committees. Exactly one person is on three committees
and nobody is on four committees. How many people are on at least one committee?
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6. Decide whether or not the following graph is Hamiltonian. If it is, exhibit a Hamiltonian
cycle. If it is not, explain why not.
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What is the chromatic number of the following graph? Explain your answer.



7. Find the length of the shortest path from A to Z in the following weighted graph.
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How many paths from A to Z are there that have the shortest length?
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Find a minimal spanning tree for the following weighted graph. Use Prym’s algorithm,
starting from the bottom left corner. Shade in your tree in the diagram.




8. Is the following matrix diagonalizable? Explain your answer.
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9. Diagonalize the matrix
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Find A'®. Your answer should be a 2 x 2 matrix, but you do not need to simplify the entries.
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10. Solve the following linear programming problem via the simplex method. Show all work.

Maximize z=z+y

subject to =+ 3y <24
T+ 6y <42
z,y >0
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Draw the feasible region, and show how the basic solution changes during the simplex
method.
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Extra credit (5 points). Show that
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where F,, is the nth Fibonacci number, as in Problem 2. Use this to find a non-recursive
formula for F,,. What is the relationship between the characteristic polynomial of a second

order linear homogeneous recurrence relation and the characteristic polynomial of a 2 x 2
matrix?
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