MATH 2602
Linear and Discrete Mathematics Prof Mrrguit

WHAT IS DISCRETE MATH?
discrete fl) [dih-skreet] ? Show IPA
adjective

1. apart
2. consisting of or characterized by distinct or individual parts;
3. Mathematics .
a. (of a topology or topological space) having the property
b. defined only for an isolated set of points: a discrete
variable.
c. using only arithmetic and algebra; not involving
calculus: discrete methods.

Discrete is the opposite of continuous.

WHAT IS DISCRETE MATH?

 IF THE
PIXELS
ARE TOO
SMALL,
IT'S
IMPOSSIBLE
TO SEE
THEM AT
PLAIN
SIGHT

WHAT IS DISCRETE MATH?

CONTINUOUS	DISCRETE
real numbers	integers
measuring	counting
ideal shapes	computer images
wave	particle
differential eqn	recurrence rein calculus
	probability graph theory algorithms

Chapter 0
YES, THERE ARE PROOFS!

Knights and Knaves
Everyone is either a Knight (truthteller) or Knave (liar).

1. Anna says E/șa is a knight. Else says she is a Knight. What can you conclude?
2. Anna says at least one of us is a knave. What can you conclude?

O. 1 Compound Statements

STATEMENTS
A mathematical statement is a declarative sentence that is either true or false.
Examples. $\quad \frac{1}{2}$ is prime number. π is a rational number. If $1+1=3$ then $5=7$
Non-examples. What is my name?
Solve for $x: 2 x=10$.
Beep pep.
Et cetera.
We sometimes represent a statement tu a feller.

THIS IS FALSE
Consider the following sentence:
This statement is false.
Is this a mathematical statement? Is it true or false?

New Statements From Old
AND. $p \wedge q$ is true if both are.
OR. $p \vee q$ is true if at least one is.
Caution! Or has different uses in English: Can have Soup or salad need a licenseor passport
Nor. $\neg p$ is true if p isn't.
"it is not the case that p "

IMPLICATIONS
IMPLICATION. $p \rightarrow q$ is true unless p true, q false
"if p then q "

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

EXANPLES. If $1=2$, I am the pope. if I have 4 quarters, I have a dollar.

IMPLICATIONS
CONVERE. The converse of $p \rightarrow q$ is
The converse of a true statement can be true or false.
Contrapositive. The contrapositive of $p \rightarrow q$ is
The contrapositive is equivalent to the original statement!
If you won you got a medal.
If you didn't get a medal, you didn't win.
NEGATION. $\neg(p \rightarrow q) \equiv p \wedge \neg q$
Double $\operatorname{Implication} .(p \rightarrow q) \wedge(q \rightarrow p)$ is written
You got a medal if and only if you won.

Quantifiers
First, a propositional function is a statement with a variable that becomes a mathematical statement when a value is given to the variable:

$$
n \text { is even }
$$

We can also turn a propositional function into a mathematical statement using quantifiers.

For all. $\forall n \in \mathbb{Z}$ (n is even n)
There exists. $\exists n \in \mathbb{Z}$ (n is even)
and combinations: $\forall n \in \mathbb{Z} \exists m \in \mathbb{Z}$ ($n+m$ is even)
$\exists m \in \mathbb{Z} \forall n \in \mathbb{Z}$ ($n+m$ is even) etc.
NEGATION. $\neg(\exists m \forall n(n+m$ is even $)) \equiv$
$\forall m \exists n(n+m$ is odd $)$

THE SECRET \forall
When we say:
We really mean: If n is even, then $n+1$ is odd.

$$
\forall n(n \text { even } \rightarrow n+1 \text { odd })
$$

So for instance the negation is:

$$
\begin{aligned}
& \exists n-(n \text { ever } \rightarrow n+1 \text { odd) }) \\
& \exists n \text { (n even } \lambda+1 \text { even })
\end{aligned}
$$

NEGATION
Which of the following statements are true?
(i) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is an odd function then $f+g$ is an odd function.
(ii) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an even function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is an odd function then fg is an odd function.
(iii) $\exists x \in \mathbb{R}\left(x^{2}<0\right)$
(iv) $\exists x \in \mathbb{R} \exists y \in \mathbb{R} \quad(3 x-2 y=1 \wedge x+2 y=3)$
(v) $\exists x \in \mathbb{R} \exists y \in \mathbb{R} \quad(x+y=0 \wedge x+y=1)$
(vi) $\exists N \in \mathbb{Z} \quad \forall m \in \mathbb{Z} \quad(m \leq N)$
(vii) $\forall x \in \mathbb{R} \forall y \in \mathbb{R}((x \geqslant 0 \wedge y \geqslant 0) \rightarrow x y \geqslant 0)$

Write the negation of each false statement.

Direct Proofs
Prove each of the following propositions.

1. For all $m \in \mathbb{Z}, m^{2}+m$ is even.
2. If $x \geqslant 10$ then $x^{4} \geqslant 100 x$
3. The product of two odd functions is even.

Proofs by Cases

1. If $4 \leq n \leq 13$, then n is the sum of two primes.
2. For all $n \in \mathbb{Z}, n^{2}-n \geqslant 0$.
3. It is possible to pay any (integer) number of dollars at least 6 with $\$ 3$ and $\$ 4$ bills.

Proofs by Contradiction and Contrapositive
Prove each of the following propositions.

1. The square root of an irrational number is irrational.
2. If 6 people need to eat 50 skittles, then someone must eat more than 8 skittles.
3. The function \sqrt{x} is not a rational function.
$\sqrt{4}$ IS IRRATIONAL
Prop. $\sqrt{4}$ is irrational.
Proof. Suppose, for contradiction that $\sqrt{4}=P / q$, in lowest terms.
Then $4=p^{2} / q^{2}$
so $4 q^{2}=p^{2}$
So p is even
so p^{2} is divis. by 4.
so $p^{2}=4 r^{2}$
so $4 q^{2}=4 r^{2}$
So $q^{2}=r^{2}$
so $q=r$
so Plq $=2 r / r$ is not in lowest terms.
This is a contradiction.

More $P_{\text {roofs }}$
Prove or disprove each of the following propositions.

1. No two consecutive integers are prime.
2. $\sqrt{3}$ is irrational.
3. For all $x, y \in \mathbb{R}, \quad|x+y| \leqslant|x|+|y|$.
4. It is possible to tile a chessboard with dominus after two opposite corners have been removed.

TRUTH TABLES
Is the following proposition a tautology, a contradiction, or neither?

$$
(\neg p \wedge q) \wedge(p \vee \neg q)
$$

Can you verify your answer without truth tables?

DISJUNCTIVE NORMAL FORM

p	q	r	S
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	T

Can you find some statement S with this truth table? Hint: disjunctive normal form Can you find a short statement S with this truth table? Hint: use \rightarrow

DISJUNCTIVE NORMAL FORM
Is disjunctive normal form unique? In other words, is it possible to find different disjunctive normal forms that are equivalent?

BASIC LOGICAL EQUIVALENCES
Idempotence.

$$
p \vee p \equiv p
$$

$$
p \wedge p \equiv p
$$

Commutativity $p \vee q \equiv q \vee p$

$$
p \wedge q \equiv q \wedge p
$$

Associativity $p \vee(q \vee r) \equiv(p \vee q) \vee r$

$$
p \wedge(q \wedge r)=(p \wedge q) \wedge r
$$

Distributivity $p \times(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$

$$
p X(q \vee r) \equiv(p \not q q) \vee(p \wedge r)
$$

Double negation.
Domination.

$$
\begin{aligned}
& \neg(\neg p) \equiv p \\
& p \vee T \equiv P \\
& p \wedge F \equiv F
\end{aligned}
$$

DeMorgan's Laws. $\neg(p \vee q) \equiv \neg p \wedge \neg q$

$$
\rightarrow(p \wedge q) \equiv \neg p \vee \neg q
$$

Implications. $p \rightarrow q \equiv q \vee \neg p$

LOGICAL EQUIVALENCES
Show the following equivalences:

$$
\begin{aligned}
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& \neg(p \vee(\neg p \wedge q)) \equiv \neg p \wedge \neg q
\end{aligned}
$$

TAUTOLOGIES
Show that the following statements are tautologies.

1. $(p \wedge q) \longrightarrow(p \vee q)$
2. $ᄀ p \wedge(p \vee q) \rightarrow q$

TAUTOLOGIES
Determine whether or not the following statements are tautologies.

$$
\begin{aligned}
& (\neg p \wedge(p \rightarrow q)) \rightarrow \neg q \\
& (\neg q \wedge(p \rightarrow q)) \rightarrow \neg p
\end{aligned}
$$

REFLEXIVE
Which of the following are reflexive relations on the set of people in the world?
a lives within a mile of b a is taller than b a has the same birthday as b a has a common grandparent with b a lives in the same country as b

SYMMETRIC
Which of the following are symmetric relations on the set of people in the world?
a lives within a mile of b a is taller than b a has the same birthday as b a has a common grandparent with b a lives in the same country as b

TRANSTTME
Which of the following are transitive relations on the set of people in the world?
a lives within a mile of b a is taller than b a has the same birthday as b a has a common grandparent with b a lives in the same country as b

Equivalence relations
Which of the following are equivalence relations on the set of people in the world?
a lives within a mile of b
a is taller than b
a has the same birthday as b
a has a common grandparent with b
a lives in the same country as b
For all equivalence relations, find the quotient sets.

EQUIVALENCE RELATIONS
Are the following relations on \mathbb{Z} reflexive? symmetric? transitive?

$$
\begin{aligned}
& \leq \\
& \neq \\
& \{(x, y)||x-y| \leq 1\} \\
& \{(x, y) \mid x-y \text { is divisible by } 10\} \\
& \{(x, y) \mid x-y \text { is divisible by } 2\}
\end{aligned}
$$

For all equivalence relations, find the quotient set.

PICTURES
What relations on \mathbb{R} or \mathbb{Z} are depicted?

FUNCTIONS
Is this a function?

ONTO
Which of the following functions are onto?

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}-4 x+5$
2. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sin (x)$
3. $f: \mathbb{R} \rightarrow \mathbb{Z}, f(x)=\lceil x\rceil$
4. $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=2 x$
5. $f:\{$ people $\} \rightarrow\{A, \ldots, Z\}, f(x)=$ first initial of x.

When a function is not onto, describe the image.

ONE-TO-ONE
Which of the following functions are one-to-one?

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}-4 x+5$
2. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sin (x)$
3. $f: \mathbb{R} \rightarrow \mathbb{Z}, f(x)=\lceil x\rceil$
4. $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=2 x$
5. $f:\{$ people $\} \rightarrow\{A, \ldots, Z\}, f(x)=$ first initial of x.

When a function is not one-to-one, find the largest domain on which it is.

IDENTITY FUNCTION
Let A be a set. The identity function is always...
A. one-to-one
B. onto
C. both
D. neither

INVERSES
Find the inverses of the following functions.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=3 x+7 \\
& f(x)=\frac{x}{x-1} \\
& f(x)=\ln (2 x-5)
\end{aligned}
$$

COMPOSITION
Say $f(x)=\lceil x\rceil$ and $g(x)=\sqrt{x}$.
What is the domain of $f \circ g$?
What is $f \circ g(10)$?

Find the inverse of $f(x)=(2 x+8)^{3}$ and check $f \circ f^{-1}$ is the identity.

HOTEL INFINITY
Hotel Infinity has rooms numbered 1,2,3,...
Today, every room is occupied. Someone walks into the lobby and asks for a room. Can the hotel accommodate her?

HOTEL INFINITY
Hotel Infinity is so successful they open Hotel Infinity 2, just like the first.

There is a fire in Hotel Infinity 2. Can Hotel Infinity accommodate the overflow?

HOTEL INFINITY
Now there is Hotel Infinity 2, Hotel Infinity 3, etc. All the hotels except the first burn to the ground. Can Hotel infinity accommodate the overflow?

HOTEL INFINITY
Show that the following sets are countable:

$$
\begin{aligned}
& \mathbb{N} \cup\{0\} \\
& \mathbb{N} \cup \mathbb{N} \\
& \mathbb{N} \cup \mathbb{N} \cup \mathbb{N} \cup \cdots
\end{aligned}
$$

INTERVALS
Show that the following pairs of sets have the same cardinalities.

$$
\begin{aligned}
& (0,1) \text { and }(1,3) \\
& (-\infty, \infty) \text { and }(0, \infty)
\end{aligned}
$$

CANTOR DIAGONALIZATION
THEOREM. \mathbb{R} is uncountable.

RATIONALS
Is \mathbb{Q} countable?
What about $\mathbb{R} \backslash \mathbb{Q}$?
What about the Cantor set?

LINES AND SQUARES
Show that $|[0,1]|=\left|[0,1]^{2}\right|$.

COUNTING SOLDIERS
A general lines her troops in rows of 9 , then 10 , then 11 . Each time, there are leftovers: 1,2, and 4, respectively.
Can the general tell just from this information exactly how many soldiers she has?

CONGRUENCE
Compute:

$$
\begin{aligned}
& 1234567(\bmod 10) \\
& 1027581(\bmod 2) \\
& 624897(\bmod 3) \\
& 169 \quad(\bmod 24)
\end{aligned}
$$

CONGRUENCE
Compute: $101 \times 122(\bmod 3)$

$$
149728 \times 51(\bmod 3)
$$

CONGRUENCE
Solve: $x+7 \equiv 2(\bmod 19)$

Solve:

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

MULTIPLICATIVE INVERSES
Does every number have a multiplicative inverse $\bmod n$?

Congruence
Solve:

$$
\begin{aligned}
& 2 x \equiv 1(\bmod 9) \\
& 7 x \equiv 1(\bmod 100) \\
& 7 x \equiv 2(\bmod 100) \\
& 7 x \equiv 3(\bmod 100)
\end{aligned}
$$

CHINESE REMAINDER THEOREM
Solve:

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& x=1(\bmod 9) \quad \text { Hint: } 6 \cdot 90-49 \cdot 11=1 \\
& x \equiv 2(\bmod 10) \\
& x \equiv 4(\bmod 11)
\end{aligned}
$$

CHINESE REMAINDER THEOREM
Solve:

$$
\begin{aligned}
& x \equiv 1(\bmod 9) \\
& x=2(\bmod 10) \\
& x \equiv 4(\bmod 11)
\end{aligned}
$$

$$
\text { Hint: } 6 \cdot 90-49.11=1
$$

First solve just the first two, mod 90. Since

$$
1 \cdot 10-1 \cdot 9=1
$$

we have: $1 \cdot(1 \cdot 10)-2(1 \cdot 9)=-8 \equiv 82(\bmod 90)$
Now Solve: $x \equiv 82(\bmod 90)$

$$
x \equiv 4(\bmod 11)
$$

Since $6.90-49.11=1$
we have: $4(6.90)-82(49.11)=-42,038 \equiv 532(\bmod 990)$

INDUCTION
Prove the following statements by induction.
(1) $\sum_{i=1}^{n} i=n(n+1) / 2 \quad n \geqslant 1$
(2) $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6 \quad n \geqslant 1$
(3) $\sum_{i=1}^{n}(2 i-1)=? ? \quad n \geqslant 1$

TOWERS OF HANOI
Use induction to show that it is possible to solve the Towers of Hanoi puzzle with n disks.

INDUCTION
Prove the following statements by induction.
(1) $7^{n}-1$ is divisible by 6 for all $n \geqslant 0$
(2) $n^{2}+2 n$ is divisible by 3 for all $n \geqslant 0$
(3) $(2 n)$! is divisible by 2^{n} for $n \geq 0$.

INDUCTION
Prove the following statements by induction.
(1) $n!>2^{n} \quad n \geqslant 4$
(2) $\frac{1}{n+1}+\cdots+\frac{1}{2 n} \geqslant \frac{1}{2} \quad n \geqslant 1$
(3) $(1+1 / 2)^{n} \geqslant 1+n / 2 \quad n \geqslant 0$.
(4) $(1+x)^{n} \geqslant 1+n x \quad n \geqslant 0$

INDUCTION
Prove the following statements by induction.
(1) The interior angle sum of a convex n-gan is $(n-2) \pi$.
(2) If n lines in \mathbb{R}^{2} have no triple inter sections then they divide the plane into $n+1$ regions.
(3) $F_{1}+F_{3}+\cdots+F_{2 n-1}=F_{2 n}$

OTHER INDUCTIONS
Which of the following are correct forms of induction?
(1) If $P\left(n_{0}\right)$ is true and $P(K+1)$ is true whenever $P(k)$ and $P(k-1)$ are true $\left(k>n_{0}\right)$ then $P(n)$ is true for $n \geqslant n_{0}$.
(2) If $P\left(n_{0}\right)$ is true and $P(k)$ is true whenever $P\left(n_{0}\right), \ldots, P(k-1)$ are true $\left(k>n_{0}\right)$ then $P(n)$ is true for all $n \geqslant n_{0}$
(3) If $P(5)$ is true and $P(k)$ is true whenever $P(k-1)$ is true then $P(n)$ is true for all $n \geqslant 5$.

MORE INDUCTION
Prove the following statements by induction.
(1) Every natural number has a prime factorization
(2) In a convex n-gin one can draw at most $n-2$ non-intersecting diagonals.
(3) The number of ways of breaking a $2 \times n$ candy bar into 2×1 pieces is F_{n+1}

BunNies

Towers of HaNoI
How many moves are needed to solve the towers of Hanoi puzzle with n disks?

Solving Recurrence relations
Use induction to show that the purported solutions are really solutions.
(1) $a_{n}=a_{n-1}+2, a_{0}=1$

Solution: $a_{n}=2 n+1$
(2) $a_{n}=2 a_{n-1}+1, a_{0}=1$

Solution: ??

SECOND ORDER HOMOGENEOUS LINEAR RECURRENCE RELATIONS

Solve:

$$
\begin{aligned}
& a_{n}=a_{n-2}, a_{0}=1, a_{1}=3 . \\
& a_{n}=6 a_{n-1}-9 a_{n-2}, a_{0}=1, a_{1}=0 \\
& a_{n}=2 a_{n-1}+a_{n-2}, a_{0}=0, a_{1}=1
\end{aligned}
$$

MORE PROBLEMS
(1) Solve $a_{n}=9 a_{n-2}$ where
(a) $a_{0}=6, a_{1}=12$
(b) $a_{0}=6, a_{2}=54$
(c) $a_{0}=6, a_{2}=10$
(2) Solve $a_{n}=8 a_{n-1}-16 a_{n-2}, a_{0}=1, a_{1}=16$
(3) Solve $5 a_{n}=11 a_{n-1}-2 a_{n-2}, a_{0}=2, a_{1}=-8$.

SECOND ORDER NONHOMOGENEOUS
LINEAR RECURRENCE RELATIONS
Solve:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+1, a_{1}=1 \\
& a_{n}=3 a_{n-1}+5 \cdot 7^{n}, \quad a_{0}=2 . \\
& a_{n}=-a_{n-1}+n, a_{0}=1 / 4 . \\
& a_{n}=2 a_{n-1}-n / 3, a_{0}=1
\end{aligned}
$$

MORE PROBLEMS
(1) Solve $a_{n}=5 a_{n-1}-6 a_{n-2}+6 \cdot 4^{n}$
(2) Solve $a_{n}=a_{n-1}+3 n^{2}, a_{0}=7$

By the way, there is another method for solving \#2, the method of undetermined coefficients. Dea: recursively substitute: $a_{n}=a_{0}+\sum_{i=1} f(i)=7+3 \sum_{i}^{2}=\cdots$

BIG 0

This diagram demonstrates:
(a) f is $\theta(g)$
(b) g is $\sigma(f)$
(c) both

BIG 0
We say that " f is big 0 of g " and write

$$
f=\sigma(g) \text { or } f \in \sigma(g)
$$

if there is a natural number n_{0} and a positive real number c such that

$$
|f(n)| \leq c|g(n)|
$$

for $n \geqslant n_{0}$.
First examples: (1) $f(n)=n^{2}, g(n)=7 n^{2}$
(2) $f(n)=4 n+2, g(n)=n$
(3) $f(n)=n^{2}, g(n)=n^{2}+2 n+1$
(4) $f(n)=n, g(n)=\sqrt{n}$

LIMIT THEOREM
THEOREM: Let f, g be functions $\mathbb{N} \rightarrow[0, \infty)$
(a) If $\lim _{n \rightarrow \infty} f(n) / g(n)=0$, then $f<g$
(b) $\mid f \lim _{n \rightarrow \infty} f(n) / g(n)=\infty$, then $g<f$
(c) $I f \lim _{n \rightarrow \infty} f(n) g(n)=L \neq 0$, then $f \approx 9$

MORE EXAMPLES
(1) Compare $n!\& n^{n}$
(2) Compare $n!\& 2^{n}$

COMBINING FUNCTIONS
Theorem: Let f, g be functions $\mathbb{N} \rightarrow \mathbb{R}$.
(a) If $f \in \sigma(F)$, then $f+F \in O(F)$
(b) If $f \in O(F)$ and $g \in O(G)$ then $f g \in O(F G)$.

POLYNOMIALS
Theorem: Let $f(n)=a_{d} n^{d}+\cdots a_{1} n+a_{0}$ be a degree polynomial $\left(a_{d} \neq 0\right)$. Then $f(n) \stackrel{t}{ } n^{d}$.

MORE COMPARISONS
Theorem: (a) If $k<l$, then $n^{k}<n^{l}$
(b) If $k>1$, then $\log _{k} n<n$
(c) If $k>0$, then $n^{k}<2^{k}$

HEXARCHY

$$
\begin{aligned}
& 1<\log n<n<n^{k}<k^{n}<n!<n^{n} \\
& \text { const }<\log <\text { linear }<\text { poly }<\exp <\text { fact }<\text { tower }
\end{aligned}
$$

MORE DETALED HERARCHY

$$
\begin{aligned}
& 1<\log n<\sqrt{n}<n / \log n<n<n \log n<n^{3 / 2} \\
& <n^{2}<n^{3}<\cdots \\
& <2^{n}<3^{n}<\cdots \\
& <n! \\
& <n^{n}<n^{n^{n}}<\ldots
\end{aligned}
$$

COMPARING DIFFERENT ORDERS

	10	50	100	300	1000	
$5 n$	50	250	500	1500	5,000	
$n \operatorname{logn}$	33	282	665	2469	9966	
n^{2}	100	2500	10,000	90,000	$1,000,000$	\# secs since big bang: ~ 1024
n^{3}	1,000	125,000	1 mil	27 mil	1 bill	\# protons in the
2^{n}	10^{24}	16 digits	31 dig.	91 dig.	302 dig.	
universe:						
~ 1026						

COMPARING DIFFERENT ORDERS
How long would it take at 1 step per usec?

D. Harel, Algorithmics

PHONE NUMBERS
Are there two students at Georgia Tech with the same last 4 digits of their phone number?

HAIR
Are there two non-bald people in Atlanta with the same number of hairs on their heads?

R閭

PIGEONHOLE PROBLEMS

1. Show that, given 5 points in a unit square, there are two points within $\sqrt{2} / 2$ of each other.
2. Show that, given any 11 integers, there is a pair of numbers whose difference is divisible by 10 .
3. Show that, at any party, there are always two people with the same number of friends.

PIGEONHOLE PROBLEMS
4. Take a chessboard with two opposite corners removed. Con you cover it with dominus?

Hint: The dominos give a bijection between black squares and white squares.
5. On a 5×5 chessboard, there is one flea in each square. Each flea jumps to an adjacent square. Are there now two fleas in the same square?
6. Arrange the numbers $1, \ldots, 10$ on a circle in any order. Show that there are 3 consecutive numbers that add to 17 or more.

STRONG PIGEONHOLE
Our class has 68 students. What is the biggest N so that we know that some month has N birthdays?

More PRoblems

1. How many 3 digit numbers are there?
2. How many 3 digit numbers are there with no repeated digits?
3. How many 3 digit numbers are there with the $i^{\text {th }}$ digit equal to i for some i.

MORE PROBLEMS
4. How many functions are there $A \rightarrow B$ if $|A|=m,|B|=n$?
5. How many injective functions are there $A \rightarrow B$ if $|A|=m,|B|=n$?
6. How many subsets of A are there if $|A|=n$?

MORE PROBLEMS
7. How many even 4 digit numbers are there with no repeated digits?
8. How many odd 4 digit numbers are there with no repeated digits? (Harder!)
9. How many ways are there to place a domino on a chessboard?

MORE PROBLEMS
10. How many bit strings are there that have length n and begin and/or end with a 1?
11. How many different dominos are there?
12. How many arrangements are there of 6 men and 4 women at a round table if no women sit together?

MORE PROBLEMS
13. Given 20 integers, show there is a pair whose difference is divisible by 19.
14. If we want to label the chairs in a room by one letter and one number from 1 to 100, how many labels are there?
15. How many distinct alphanumeric passcodes are there if each passcode has 6-8 characters and at least one digit?
16. In how many ways can a best-of-5 series go down?
17. Given 5 points on a sphere, how many necessarily lie on the same hemisphere?

Permutations
In a club with 10 people, how many ways are there to choose a president, vice president, and secretary?

Permutations
How many permutations of 4 objects?

PERMUTATION PROBLEMS
A group has n men and n women. In how many ways can they be lined up so that men and women alternate?

PERMUTATION PROBLEMS
How many ways are there to seat 6 boys and 4 girls at a round table if no two girls sit together?

Note: A rotation of a configuration is considered the same as the original configuration.

PERMUTATION PROBLEMS
Arrange all 26 letters of the alphabet in a row.
a) How many such "words" are there?
b) How many contain HAMLET as a subword, e.g. VRPKGCHAMLETBDFIZWJ NQOSYUX
c) How many have exactly 4 letters between H and T ?

COMBINATIONS
In a club with 10 people, how many ways to choose a committee with 3 members?

MARBLES AND BOXES
Distinguishable marbles: Say we want to put a red, a green, and a blue marble into 5 boxes. How many ways?

Indistinguishable marbles: Say we want to put 3 indistinguishable marbles in 5 boxes. How many ways?

COMBINATION PROBLEMS

1. Five people need a ride. My car holds 4. In how many ways can I choose who gets a ride?
2. If you toss a coin 7 times, in how many ways can you get 4 heads?
3. The House of Representatives has 435 representatives. How many 4-person committees can there be?

MORE PROBLEMS

1. How many bit strings are there with fifteen O 's and six I's if every 1 is followed by a 0?

Note: Too hard if you think of it as a sequence of 21 tasks.

MORE PROBLEMS
2. How many strings in the letters a, b, and c have length 10 and exactly 4 a's?

Again, don't choose the 10 letters one by one.

MORE PROBLEMS
3. A lottery ticket has six numbers from 1 to 40 . How many different tickets are there?

The lottery agency chooses six winning numbers. How many different possible lottery tickets have exactly four wiring numbers?

MORE PROBLEMS
4. Determine the number of alphabetic strings of length 5 consisting of distinct (capital) letters that
(a) do not contain A
(b) contain A
(c) start with $A B C$
(d) start with A, B, C in any order
(e) contain A, B, C in that order
(f) Contain A, B, C

MORE PROBLEMS
5. Determine the number of possible softball teams ($=9$ people) can be made from a group of 10 men, 12 women, and 17 children if:
(a) there are no restrictions
(b) there must be 3 men, 3 women, 3 children
(c) the team must be all men, all women, or all children
(d) the team cannot have both men and women.

MORE PROBLEMS
6. In how many ways can you put 5 indistiguishable red balls and 8 indistinguishable green balls into 20 boxes if
(a) there can be at most one ball per box
(b) there can be at most one ball of each color per box.

MORE PROBLEMS
7. How many poker hands are:
(a) total
(b) 4 of a kind
(c) flush
(d) straight
(e) straight flush
(f) full house
(g) 3 of a kind
(h) 2-pair
(i) Pair
(j) neither flushes straights, full house
3 of a kind, 2 pair, pair

PROBABILITY
You have 3 cards. One is red on both sides, one is black on both sides, and one has a red side and a black side. You pick one card randomly and put it on the table. Its topside is red. What is the probability the other side is red?

PROBABILITY
What is the probability that...
a) A flipped coin comes up heads?
b) A rolled die comes up 3?
c) A rolled pair of dice comes up 4?

MORE EXAMPLES

1. You toss a coin 5 times. What is the probability of getting 4 heads?
2. What is the probability of correctly guessing the winners in a 64-team single elimination tournament?
(Assume every team has a 50% chance of winning each game)

MORE EXAMPLES
3. An urn has 4 red balls, 3 green balls. You pull one ball at random. What is the probability of pulling a green ball?

Suppose you pull one ball, replace it, then pull another ball. What is the probability of pulling two balls of the same color?

MORE EXAMPLES
Same urn (4 red, 3 green). Now suppose you pull one ball, don't replace it, and pull another ball. What is the probability of getting two balls of the Same color?

MORE EXAMPLES
4. In poker, what is the probability of dealing a 4-of-a-kind?

What about a full house?

APPLYING PROBABILITY RULES
ExAMPLE: Anumber from 1 to 100 is chosen at random.
What is the probability it is...
a) divisible by 2,3 , or 5 ?
b) divisible by 2 and 3 , but not 5 ?
c) divisible by 3 but not 2 or 5 ?
d) divisible by at most two of 2,3 , and 5 ?

Mutual Exclusivity
Two events A and B are mutually exclusive if $A \cap B=\varnothing$
Events A_{1}, \ldots, A_{n} are pairwise mutually exclusive if $A_{i} \cap A_{j}=\phi$ whenever $i \neq j$.

If A_{1}, \ldots, A_{n} are pairwise mutually exclusive events, then $P\left(A_{1} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+\cdots+P\left(A_{n}\right) \quad$ (addition rule)

EXAMPLE: A number from 1 to 100 is chosen at random. What is the probability that the number is divisible by 7 or 30 ?

APPLYING PROBABILITY RULES

1. What is the probability that a length 10 bit string (chosen at random) has at least one zero? at least two zeros?
2. What is the probability that a poker hand (dealt at random) is a flush? a straight? royal flush?

Note: $A, 2,3,4,5$ and $10, J, Q, K, A$ are both straights.

THE MONTY HALL PROBLEM

"Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the other doors, opens another door, say No. 3, which has a goat. He then says to you, 'Do you want to pick door No. 2?' Is it to your advantage to take the switch?"

CONDITIONAL PROBABILITY
A coin is flipped twice. The first flip is heads. What is the probability that both flips are heads?

Intuition:
Basic probability:

Conditional probability:

CONDITIONAL PROBABILITY
I have two kids. One is a boy. What is the probability I have two boys?

CONDITIONAL PROBABILITY

1. An urn has 10 white, 5 yellow, and 10 black marbles. A marble is chosen at random. We are told it is not black. What is the probability it is yellow?
2. We deal bridge hands at random to N, S, E, W. Together, N and S have 8 spades. What is the probability that E has 3 spades?

CONDITIONAL PROBABILITY
Alice and Bob each roll a die. We are told that Alice rolled a higher number. What is the probability that Alice rolled a 3?

INDEPENDENCE
Events A and B are independent if

$$
P(B \mid A)=P(B)
$$

Since $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$ we can say A and B are independent if:

$$
P(A \cap B)=P(A) P(B)
$$

Examples. 1. We roll two die.

$$
A=\text { first comes up } 2
$$

$B=$ second comes up 3
2. Two kids.

$$
\begin{aligned}
& B=2 \text { boys } \\
& A=\text { at least one boy }
\end{aligned}
$$

INDEPENDENCE
Events A and B are independent if

$$
P(B \mid A)=P(B)
$$

Examples. 3. The Alice and Bob problem:

$$
\begin{aligned}
& B=\text { Alice rolled } 3 \\
& A=\text { Alice }>\text { Bob }
\end{aligned}
$$

4. Urn problem: 10 white, 5 yellow, 10 black. Are Y and B^{c} independent?

A CONDITIONAL PROBABILITY PROBLEM
We buy light bulbs from suppliers A and B.
30% of the bulbs come from $A, 70 \%$ from B.
2\%. of the bulbs from A are defective
3% of the bulbs from B are defective.
What is the probability that a random bulb...
(i) is from A and defective?
(ii) is from B and not defective?
$*$ (iii) is defective?

LAW OF TOTAL PROBABILITY
Say that events A_{1}, \ldots, A_{n} form a partition of the sample space S, that is, the A_{i} are mutually exclusive ($A_{i} \cap A_{j}=\varnothing$ for $i \neq j$) and $A_{1} \cup \cdots \cup A_{n}=S$.

Let $X \subseteq S$ be any event. Then

$$
P(X)=P\left(A_{1}\right) P\left(X \mid A_{1}\right)+\cdots+P\left(A_{n}\right) P\left(X \mid A_{n}\right)
$$

BAYES' FORMULA
How is $P(A / B)$ related to $P(B \mid A)$?
Theorem: $\quad P(B \mid A)=\frac{P(B) P(A \mid B)}{P(A)}$
$P_{\text {Roof: }}$

ExAMPLE. In the light bulb problem, say a randomly selected light bulb is defective. What is the probability it came from A ?

BAYES' FORMULA
Example. Coin A comes up heads 1/4 of the time. Coin B comes up heads $3 / 4$ of the time. We choose a coin at random and flip it twice. If we get two heads, what is the probability coin B was chosen?

BAYES' FORMULA
Computing the denominator with the law of total probability A_{1}, \ldots, A_{n} pairwise mutually exclusive events with $A_{1} \cup \cdots \cup A_{n}=S$ and $P\left(A_{i}\right)>0$ for all i^{i}. Let X be an event with $P(X)>0$. Then, for each j, we have:

$$
P\left(A_{j} \mid X\right)=\frac{P\left(A_{j}\right) P\left(X \mid A_{j}\right)}{P(X)}
$$

where $P(X)=P\left(A_{1}\right) P\left(X \mid A_{1}\right)+\cdots+P\left(A_{n}\right) P\left(X \mid A_{n}\right)$

$$
P\left(A_{3} \mid X\right) \text { big }
$$

$$
P\left(A_{2} \mid X\right) \text { small }
$$

$$
P\left(A_{4} \mid X\right)=0
$$

EXANPLE. Do a variant of the coin problem with 3 or more cons.

BAYES' FORMULA
Problem. You have 3 cards. One is red on both sides, one is black on both sides, and one has a red side and a black side. You pick one card randomly and put it on the table. Its topside is red. What is the probability the other side is red?

BAYES' FORMULA
ProbLem. There are 3 uss, A, B, and C that have 2,4, and 8 red marbles and 8,6 , and 2 black marbles, respectively. A random card is picked from a deck. If the card is black we choose a marble from A, if it is a diamond we choose a marble from B, and otherwise choose a marble from C.
(a) What is the probability that a red marble gets drawn?
(b) If we know a red marble was drawn, what is the probability the card was hearts? diamonds?

Repetitions
Question: How many ways are there to put r identical marbles into n boxes, if you are allowed to put more than one marble per box?

First try 3 marbles into 10 boxes.
Case 1: All in same box $\binom{10}{1}$
Case 2: Two in one box, one in another 10.9
Case 3: All different boxes $\binom{10}{3}=120$
Addition rule $\leadsto 120+90+10=220$.
What about 10 marbles in 3 boxes?
Lots of cases!
What to do?

Stars and Bars
Can answer the last question by looking at it the right way:
The number of ways of putting 10 marbles into 3 boxes is the same as:
the number of binary strings with 10 zeros, 2 ones (or 10 stars, 2 bars)

How many such strings are there?

$$
\binom{12}{2}=66 \text { (choose which of the } 12 \text { spots will }
$$ be stars.)

REPETITIONS
Question: How many ways are there to put r identical marbles into n boxes, if you are allowed to put more than one marble per box?

ANswER: This is the same as the number of strings with r stars and $n-1$ bars:

$$
\binom{n+r-1}{r}=\binom{n+r-1}{n-1}
$$

Repetitions, Permutations, and Combinations
How many ways to put r marbles in n boxes if...
the marbles are the marbles are indistinguishable distinguishable

at most one marble is allowed per box	$\binom{n}{r}$	$P(n, r)$
any number of marbles is allowed in a box	$\binom{n+r-1}{r}$	n^{r}

Repetitions
EXAMPLE: How many ways are there to choose 15 cans of soda from a cooler with (lots of) Coke, Dr. Pepper, Min Dew, RC cola, and Mr. Rib?

Further: What if I insist on at least 3 Cokes and exactly one Mr. Bib?

REPETITIONS
EXAMPLE. In how many ways can we choose 4 nonnegative integers a, b, c, and so that $a+b+c+d=100$?

What if a, b, c, and d are natural numbers?

REPETITIONS
ExAMPLE. How many ways are there to choose 4 integers a, b, c, and d so that:

$$
\begin{aligned}
& a+b+c+d=15 \\
& a \geqslant-3, b \geqslant 0, c \geqslant-2, d \geqslant-1 ?
\end{aligned}
$$

Generalized Permutations
EXAMPLE. How many ways are there to arrange the letters of SYZYGY?

ExAMPLE. What about MISSISSIPPI?

Generalized Permutations
In general, say we have n objects that fall into k groups, with n_{i} objects in the $i^{\text {th }}$ group. Two objects in the same group are indistinguishable, but objects in different groups are distinguishable. In how many ways can we order the objects?

$$
P\left(n ; n_{1}, \ldots, n_{k}\right)=n!/ n_{1}!n_{2}!\cdots n_{k}!
$$

This is also the coefficient of $x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ in

$$
\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}
$$

Generalized Permutations
EXAMPLE. Suppose there are 100 spots in the showroom of a car dealership. There are 15 (identical) sports cars, 25 compact cars, 30 station wagons, and 20 vans. In how many ways can the cars be parked?

MORE PROBLEMS

1. How many numbers less than 1,000,000 have the sum of their digits equal to 19?
2. A shelf holds 12 books. How many ways to choose 5 books so no adjacent books are chosen?
3. You want to visit 5 towns twice each, but there is one town you don't want to visit twice in a row. How many different travel itineraries are there?

The Binomial Theorem
THEOREM. For any x and y and any natural number n, we have:

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\cdots+\binom{n}{n} x^{0} y^{n}
\end{aligned}
$$

The Binomial Theorem
Problem. Expand $\left(2 x^{3}+y\right)^{5}$ and simplify.

Problem. Expand $\left(x-\frac{1}{x}\right)^{6}$ and simplify.

Problem. Find the coefficient of x^{15} in $\left(x^{2}-\frac{x}{3}\right)^{11}$.

Pascal's Triangle
Theorem. The $k^{\text {th }}$ entry in the $n^{\text {th }}$ row of Pascal's triangle is $\binom{n}{k}$ for $n \geqslant 0$ and $0 \leq k \leq n$.
Note: The top row is considered to be row 0 , and the leftmost entry is entry 0 .

Proof.

Pascal's Triangle
What is the sum of the entries in the $n^{\text {th }}$ row?

$$
\begin{array}{r}
1= \\
1+1= \\
1+2+1= \\
1+4+3+1= \\
1+4+4+1=
\end{array}
$$

The Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

plug in... to prove...

$x=1, y=-1$	Inclusion- exclusion principle
$x=10, y=1$	$n^{\text {th }}$ row of $P_{s}^{\prime} \Delta=11^{k}$
$x=1, y=1$	$n^{\text {th }}$ row sum of $P_{s}^{\prime} \Delta=2^{n}$
$x=\sqrt{2}, y=-1$	$\sqrt{2}$ is irrational

The Inclusion-Exclusion $P_{\text {principle }}$
Theorem. $\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum\left|A_{i}\right|-\sum\left|A_{i n} A_{j}\right|$

$$
+\cdots+(-1)^{n+1}\left|A_{1} \cap \cdots \cap A_{n}\right|
$$

Proof:

Row Sums in Pascal's Triangle
Theorem. The sum of the entries in the $n^{\text {th }}$ row of Pascal's triangle is 2^{n} ?

Proof.

The Fibonacci Nunbers /n Pascal's Trungle

$T_{\text {HEOREM. }} \quad F_{n}=\left\{\begin{array}{c}\left(\begin{array}{c}n-1 \\ 0 \\ n-1 \\ 0\end{array}\right)+\left(\begin{array}{c}n-2 \\ n \\ 0 \\ 1\end{array}\right)+\binom{n-3}{2}+\cdots+\left(\begin{array}{c}k \\ k-1 \\ 2\end{array}\right)+\cdots+\binom{k}{k} \text { if } n=2 k \\ \text { if } n=2 k+1\end{array}\right.$

The Hockey Stick Theorem

Pascal's Trimale Noo 2

What about mod 3?

A Curious Probability
Question. A professor hands back exams randomly. What is the probability that no student gets their own exam?
AnsWER. 5 students ~
10 students ~
100 students ~

Derangement
A derangement of n objects that have some natural order is a rearrangement of the objects so that no object is in its correct position.

Question. How many are there? Call the number D_{n}.

n	D_{n}	$P\left(D_{n}\right)$
1		
2		
3		
4		

What is the pattern?

A Formula For D_{n}
Let A_{k} be the permutations of n ordered objects with object k in the correct spot.

$$
D_{n}=\left(\bigcup_{k=1}^{n} A_{k}\right)^{c}
$$

$D_{4}=$
$D_{4}=$

THERE. $D_{n}=$
D_{N} and e
THEOREM. $D_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}\right)$
Recall: $e^{x}=$

$$
\begin{aligned}
\leadsto e & = \\
e^{-1} & = \\
& \approx
\end{aligned}
$$

So $D_{n} \approx$

$$
\leadsto P\left(D_{n}\right) \approx
$$

DerAngement
PROBLEM. Fifteen people check coats at a party and at the end they are handed back randomly. How likely is it that...
(a) Tim gets his coat back?
(b) Jeremy gets his coat back?
(c) Jeremy and Tim get their coats back?
(d) Jeremy and Tim get their coats back but no one else does?
(e) The members of the Beatles get the right set of coats back (maybe not in the right order)?
(f) Everyone gets their coat back?
(g) Exactly one person gets their coat back?
(h) Nobody gets their own coat back?
(i) At least one person gets their coat back?

A Sample Problem
Among you, your buddy, two mothers, and two sisters, some people hug. There are no hugs between buddies, mothers, or sisters. The other 5 people tell you they all hugged different numbers of people. How many people did you hug?

Four Problems

The Bridges of Konigsberg

Four Color

Three House-Three Utility

Traveling Salesman

Graphs
A graph is a pair of sets V and E, where $V \neq \varnothing$ and each element of E is a pair of elements of V.

Write $G=G(V, E)$.

The elements of V and E are called vertices and edges.
Example.

$$
\begin{aligned}
& V=\text { Facebook users } \\
& E=\text { Friendships }
\end{aligned}
$$

The Handshaking Lemma
Proposmon. The sum of the degrees of the vertices of a pseudograph is an even number. Specifically:

$$
\sum_{v \in V} \operatorname{deg} v=2|E|
$$

Handshaking Lemma. The number of odd degree vertices of a pseudograph is even.
$P_{\text {Roof. }}$

Revisit the hugging problem.

The Handshaking Lemma
Problem. A graph has 50 edges, 4 vertices of degree 2, 6 of degree 5,8 of degree 4 , all other vertices have degree 6. How many vertices does the graph have?

Problem. Out of 24 curling players, 78 pairs have played on the same team. Show that one has played on the same team as 7 others. Show that one has played on the same team with no more than 6 others.

$\left.G_{\text {RAPH }}\right|_{\text {Somorphism }}$

Which of the following pairs are isomorphic?
a)

Invariants of Graphs
We can use the following "fingerprints" of graphs in order to tell if two graphs are different:
(i) Number of vertices
(ii) Number of edges
(iii) Degree sequence etc.

It is possible for two graphs to have the same degree sequence and be nonisomorphic:
$I_{\text {variants of Graphs }}$
We can use the following "fingerprints" of graphs in order to tell if two graphs are different:
(i) Number of vertices
(ii) Number of edges
(iii) Degree sequence etc.

It is possible for two graphs to have the same degree sequence and be nonisomorphic:

$\{2,2,2,1,1\}$

$\{2,2,2,1,1\}$

EXAMPLES
Which of the following graphs are isomorphic?
a)

c) $A F K M R$ $S T \vee X Z$
b)

d)

The Königsberg Bridge Problem

The Bridges of Konigsberg

Is it possible to take a walk, cross each bridge exactly once, and return to where you started?

Or: Is the following pseudograph Eulerian?

Connectivity
We just argued that Eulerian graphs have no vertices of odd degree.
What else? Eulerian graphs must also be connected.
A pseudograph is connected if there is a walk between any two vertices.

connected
not connected

Eulerian Pseudographs
ThEOREM. A pseudograph is Eulerian if and only if it is connected and every vertex has even degree.

Eulerian Pseudographs
For each pseudograph, find an Eulerian circuit if it exists.
(i)

(iii)

(ii)

(iv)

Hamiltonian Cycles
A Hamiltonian cycle in a pseudograph is a walk that visits each vertex exactly once:
 Find one!

If a pseudograph has a Hamiltonian cycle, we say the pseudograph is Hamiltonian.

Euler: each edge once
Hamilton: each vertex once

Note: A Hamiltonian cycle is isomorphic to an n-cycle.

Hamiltonian Cycles
Show that the following graphs are Hamiltonian.

In other words, find a Hamiltonian cycle in each.

Hamiltonian Graphs
We saw that it is easy to tell if a graph is Eulerian or not. To prove a graph is Hamiltonian, just find a Hamiltonian cycle. But there is no easy method for showing a graph is not Hamiltonian.

You could check all paths of length |V|. Takes too long!
Better to use some basic facts:
Let H be a Hamiltonian cycle in a pseudograph G
(1) Every vertex of G has exactly two edges of If passing through it.
(2) The only cycle contained in H is \mathcal{H}.

Hamiltonian Graphs
Prove that the following graphs are not Hamiltonian.

The Petersen Graph
Proposition. The Petersen graph is not Hamiltonian.

Hamiltonian Graphs
Which of the following graphs are Hamiltonian?

Hamiltonian Graphs
Which K_{n} are Hamiltonian?
Which $K_{m, n}$ are Hamiltonian?
What about the knight graph on a chessboard?

Gray Codes
We can record the position of a rotating pointer with a bit string:

Can read the position of the arrow with 3 sets of contacts:

Problem: A small error could give 100 instead of 011 \leadsto all 3 bits wrong!

Gray Codes
To fix this, want to number so that adjacent regions differ by one bit.

At first, not obvious how to do this.
But: such a numbering is just a Hamiltonian cyde in the n-cube.

Weighted Graphs
A weighted graph is a graph $G(V, E)$ together with a function $\omega: E \rightarrow[0, \infty)$

For $e \in E$, the number $w(e)$ is the weight of e.

Weighted Graphs

Graph	Vertices	Edges	Weights
communication	computers	fiberoptic cables	response time
air travel	airports	flights	flight times
cor travel	street corners	streets	distances
Kevin Bacon	actors	common movies	1
stock market	stocks	transactions (directed edges)	cost
operations research	projects	dependencies (directe dedges)	times

Distance Problems
Traveling Salesman Problem. Given a list of cities to visit, what is the minimum distance you need to travel?
$T S P$ is really a question about weighted graphs.
Easier Problem. Given two vertices in a weighted graph, what is their "distance."

ExAMPLE
Problem. Find the distance between A and E.

How to find the shortest path in general?

Dijkstra's Algorithm
To find the distances from a given vertex A in a weighted graph to all other vertices, do the following.

First, give A the permanent label O, and give all other vertices the temporary label ∞.
Then repeat the following step:
Find the vertex v with the newest permanent label.
For each vertex v^{\prime} adjacent to v with a temporary label, check if
label of $v+\omega\left(v^{\prime}\right) \leq$ label of v^{\prime}
If so, change the temporary label of v.
Make the smallest temporary label permanent.
Permanent labels are the distances from A.

Dijkstra's Algorithm
Find the distance from A to each other vertex.

Dijkstra's Algorithm
What if we further want to find a walk between two vertices with the shortest length (not just the distance between the two vertices)?

Idea: Every time we make a label permanent, draw a little arrow from that vertex to all other vertices that are "en route" to the home vertex A

Then, follow the arrows to find all shortest walks home.

Dijkstra's Algorithm
Find all shortest paths from A to E.

Dijkstra's Algorithm
Find the shortest paths...

from $L A X$ to JFK

from Nakamura to Tokushima

Dijkstra's Algorithm
What is the complexity of Dijkstra's algorithm, if size is measured in the number of vertices and cost is measured in terms of number of operations (=additions and comparisons)?

Flord-Warshall Algorithm
Idea: Number the vertices v_{1}, \ldots, v_{n}.
Step k : Find the shortest path from v_{i} to v_{j} if you are only allowed to use v_{1}, \ldots, v_{k} as intermediate vertices (= pit stops).
Can write this info, in a matrix M_{k}.
Write ∞ if there is no path.
Do this for $k=0, \ldots, n$. (At Step 0 , no pit stops allowed.)
The $i j$-entry of M_{n} is the distance from v_{i} to v_{j}.
Key observation. For $k \geqslant 1$:

$$
M_{k}(i, j)=\min \left\{M_{k-1}(i, j), M_{k-1}(i, k)+M_{k-1}(k, j)\right\}
$$

Floyd-Warshall Algorithm
ExaMPLE.

$$
\left.\begin{array}{ll}
M_{0}=\left(\begin{array}{lll}
0 & 3 & 1
\end{array}\right. \\
0 & 1 \\
& 0 \\
& 0 \\
0
\end{array}\right) \quad M_{1}=\left(\begin{array}{lll}
0 & 3 & 1 \\
0 & 1 & 8 \\
0 & 0 & 6 \\
& & 0
\end{array}\right) \quad M_{2}=\left(\begin{array}{lll}
0 & 3 & 1 \\
0 & 1 & 8 \\
0 & 1 & 6 \\
& 0
\end{array}\right)
$$

Note: Mk has same row/col k as M_{k-1}.

Flord-Warshall Algorithm
Find all distances using the Floyd-Warshall algonthm.

DIJKSTRA vs FLIKD-WARSHALL
To find distances for all pairs of vertices, we need to run Dijkstra's algorithm n times $\leadsto \theta\left(n^{3}\right)$.
Floyd-Warshall is also $\theta\left(n^{3}\right)$, but is quicker for large graphs.
One advantage to Foyd-Warshall is that it even works with negative edge weights.

TreEs
A tree is a connected graph with no circuits

Trees
Which of the following graphs are trees?
(i)

(iii)

(ii)

(iv)

Trees
List all trees with 5 or fewer vertices up to isomorphism.

Characterizing Trees
Theorem. Let G be a graph with n vertices. The following are equivalent:
(i) G is a tree (ie. G is connected with no circuits)
(ii) G is connected and has no cycles.
(iii) G is connected and has n-1 edges.
(iv) Between any two vertices of G there is a

Also: unique walk that does not repeat any edges.
(v) G has n-1 edges and no cycles
(vi) G is connected, but removing any edge makes it disconnected.
(vii) G has no cycles, but adding any edge creates one.
etc...

Application To Chemistry
A hydrocarbon has the form $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. Carbon has degree 4 and Hydrogen has degree 1 .

RROBLEM. Find all hydrocarbons for $n=1,2,3,4$.

Characterizing Trees
Theorem. Let G be a graph with n vertices. The following are equivalent:
(i) G is a tree (ie. G is connected with no circuits)
(ii) G is connected and has no cycles.
(iii) G is connected and has n-1 edges:
(iv) Between any two vertices of G there is a unique walk that does not repeat any edges.
12.2 SpanNing TREES

Spanning Trees
A spanning tree for a graph G is a subgraph that is a tree and that contains every vertex.
A minimal spanning tree for a weighted graph is a spanning tree of least weight.

Application: Given a network of roads, which roads should You pave so that (a) all towns are connected and (b) we use the least amount of asphalt?

SPARING TREES
How to find a spanning tree?
One answer: Delete all edges until there are no cycles. Example. How many spanning trees can you find?

Question. How to find all spanning trees? How many are there? Could hunt for cycles, delete edges. Inefficient!

Depth-first Search and Breadth-frst Search
Depth-first: Start at some point in the graph.
Draw a long path, go as far as possible.
When you hit a wall (= degree 1 vertex),
or an edge that creates a cycle with your path, back up one step and go in a new direction.

Breadth-first: Use as many edges from start point as possible. Then from the endpoints of all those edges use as many edges as possible, etc.

Kirchhoff's Theorem
Given a graph with vertices v_{1}, \ldots, v_{n}, make a matrix M with (i, i)-entry the degree of v_{i} and all other (i, j)-entries given by: -1 if $V_{i} V_{j}$ is an edge 0 otherwise

THEOREM. Given a graph G, make the matrix M as above. Delete the th row and the jth column to obtain a matrix M^{\prime}. Then:

$$
\begin{aligned}
(-1)^{i+j} \operatorname{det}\left(M^{\prime}\right)= & \text { \# spanning } \\
& \text { trees for } G .
\end{aligned}
$$

KirchноғF's Therem
ExAMPLE.

12.3 MINIMAL SPANNING Tree Algorithms

Krushkal's Algorithm
Goal: Find a minimal spanning tree for a given graph. Want something more efficient than enumerating all trees.

The Algorithm. Set $T=\phi$.
Consider all edges e so $T u\{e\}$ has no circuits. Choose the edge e of smallest weight with this property.
Replace T with $T u\{e\}$.
Repeat until T is a spanning tree.
Note: The number of steps is one less than the \# of vertices.
Krushkal's algorithm is an example of a "greedy algorithm"

KRUSHKAL's Algortthm
Find minimal spanning trees for the following weighted graphs.

Krusheal's Algorithm
Why does the algorithm work?
Let e_{1}, \ldots, e_{n-1} be the edges chosen by Krushkal's algorithm, in order.
Prove the following statement by induction:
$\left\{e_{1}, \ldots, e_{k}\right\}$ is contained in some minimal spanning tree.
Base case: $k=0$, ie. ϕ contained in some minimal spanning tree.
Suppose $\left\{e_{1}, \ldots, e_{k}\right\}$ contained in same minimal spanning tree T, but e_{k+1} is not in $T \leadsto T \cup e_{k+1}$ has a cycle.
There is an edge f contained in this cycle that is not equal to e_{1}, \ldots, e_{k+1} (the e_{i} form a tree, so they form no cycles). Now, f and e_{k+1} have same weight, otherwise weight of $T-f+e_{k+1}$ is less than weight of T. We see $T-f+e_{k+1}$ is the desired tree. 四

Prim's Algorithm
Idea: Grow a tree from a vertex.
The algorithm. Set $T=V$ (any vertex).
Choose an edge e of minimal weight so Tu \{e\} ~ i s ~ a ~ t r e e ~
Replace Twith Tu $\{e\}$.
Repeat until T is a spanning tree.
Note: We know Tu $\{e\}$ is a tree if $T \cap e$ is a single vertex.

Prim's Alcorithm
Find minimal spanning trees for the following weighted graphs.

Krushkal's Algorithm vs. Prim's Algorithm
What is the complexity? size = \#edges
cost= \# comparisons
KRUSHKAL: $\sigma\left(n \log n+n^{2}\right)$
PRIM: $O\left(n^{2}\right)$
Check these! Idea: order the remaining edges. Then, need to check which can be added to the current tree by comparing the endpoints of each edge with the vertices of the current tree.

The advantage over Krushkal's algorithm is that there are fewer edges to check at each step. In fact, Prim is $\theta\left(n^{2}\right)$.

Spanning Trees
A spanning tree for a graph G is a subgraph that is a tree and that contains every vertex.
A minimal spanning tree for a weighted graph is a spanning tree of least weight.

Application: Given a network of roads, which roads should you pave so that (a) all towns are connected and (b) we use the least amount of asphalt?

SPARING TREES
How to find a spanning tree?
One answer: Delete all edges until there are no cycles. Example. How many spanning trees can you find?

Question. How to find all spanning trees? How many are there? Could hunt for cycles, delete edges. Inefficient!

Depth-first Search and Breadth-frst Search
Depth-first: Start at some point in the graph.
Draw a long path, go as far as possible.
When you hit a wall (= degree 1 vertex),
or an edge that creates a cycle with your path, back up one step and go in a new direction.

Breadth-first: Use as many edges from start point as possible. Then from the endpoints of all those edges use as many edges as possible, etc.

MAZES
One algorithm for solving a maze is to put your right hand on the wall and walk.

Is this a depth-first or breatth-first algorithm?

Kirchhoff's Theorem
Given a graph with vertices v_{1}, \ldots, v_{n}, make a matrix M with (i, i)-entry the degree of v_{i} and all other (i, j)-entries given by: -1 if $V_{i} V_{j}$ is an edge 0 otherwise

THEOREM. Given a graph G, make the matrix M as above. Delete the th row and the jth column to obtain a matrix M^{\prime}. Then:

$$
\begin{aligned}
(-1)^{i+j} \operatorname{det}\left(M^{\prime}\right)= & \text { \# spanning } \\
& \text { trees for } G .
\end{aligned}
$$

KirchноғF's Therem
ExAMPLE.

Krushkal's Algorithm
The Algorithm. Set $T=\phi$.
Consider all edges e so Tu \{e\} ~ h a s ~ n o ~ c i r c u i t s . ~ Choose the edge e of smallest weight with this property. Replace T with Tu \{e\} . ~
Repeat until T is a spanning tree.
Note: The number of steps is one less than the \# of vertices.
Krushkal's algorithm is an example of a "greedy algorithm"

KRUSHKAL's Algortthm
Find minimal spanning trees for the following weighted graphs.

Krushkal's Algorithm
Why does the algorithm work?
Let e_{1}, \ldots, e_{n-1} be the edges chosen by Krushkal's algorithm, in order.
Prove the following statement by induction:
$\left\{e_{1}, \ldots, e_{k}\right\}$ is contained in some minimal spanning tree.

Prim's Algorithm
Idea: Grow a tree from a vertex.
The algorithm. Set $T=V$ (any vertex).
Choose an edge e of minimal weight so Tu \{e\} ~ i s ~ a ~ t r e e ~
Replace Twith Tu $\{e\}$.
Repeat until T is a spanning tree.
Note: We know Tu $\{e\}$ is a tree if $T \cap e$ is a single vertex.

Prim's Alcorithm
Find minimal spanning trees for the following weighted graphs.

Krushikl's Algorithm vs. Prim's Algorithm
What is the complexity?

$$
\text { size }=\# \text { edges }
$$

cost=\# comparisons
KRUSHKAL: $O\left(n \log n+n^{2}\right)$
PRIM: $O\left(n^{2}\right)$

Planar Graphs
A graph is planar if it can be drawn in the plane so that no two edges cross.

The Three House - Three Utility Problem asks whether or not $K_{3,3}$ is planar.

Platonic Solids
One collection of interesting planar graphs comes from the five Platonic solids:

Planar Graphs
Which of the following graphs are planar?

(4)

(2)

(3)

(5)

Planar Graphs

Is this graph planar?

Vertices, Edges, and Faces
A planar drawing of a planar graph divides the plane into distinct regions, or faces.

What is the pattern?

Euler's Theorem
Theorem. Any planar drawing of a graph with V vertices, E edges, and F faces satisfies

$$
V-E+F=2
$$

In 1988, the Mathematical Intelligencer ran a survey. It was decided that the 5 most beautiful results in mathematics were:
(i) Euler's identity $e^{i x}=\cos x+i \sin x$
(ii) Euler's polyhedral formula $V-E+F=2$
(iii) Euclid's proof of the infinitude of the primes
(iv) Euclid's proof that there are only 5 regular solids
(v) Euler's summation $\sum 1 / n^{2}=\pi / 6$

Euler's Theorem
Does the Buckyball satisfy $V-E+F=2$?

Euler's Theorem
THEOREM. Any planar drawing of a connected graph with V vertices, E edges, and F faces satisfies

$$
V-E+F=2
$$

$K_{3,3}$ is not Planar
Theorem. $K_{3,3}$ is not planar.
K_{5} is not Planar
THEOREM. If a planar graph has V vertices and Eedges, then $E \leq 3 v-6$.

Corollary. K_{5} is not planar.

Degrees
ThEOREM. Every planar graph has at least one vertex whose degree is less than 6.

More Nonplanar Graphs
So far, we know K_{5} and K_{33} are not planar. It follows that K_{n} is not planar for $n \geqslant 5$. $K_{m, n}$ is not planar for $m, n \geqslant 3$.
More generally:
Proposition. Any graph that contains K_{5} or $K_{3,3}$ as a subgraph is not planar.
Note also any subdivision of K_{5} or K_{3} is nonplanar:

Proposition. Any graph that contains a subdivision of K_{5} or $k_{3,3}$ as a subgraph is not planar.

Kuratowski's Theorem
Amazingly, the converse is also true:
THEOREM. A graph is planar if and only if it contains no subgraph that is a subdivision of K_{5} or $K_{3,3}$.

Proof. See web site.
Which of the following graphs are planar?

Platonic Solids
A Platonic solid is a 3-dimensional solid with polygonal faces. and satisfying: (i) The faces are regular and congruent.
(ii) The same number of faces meet at each vertex.
(iii) The line connecting any two points on the solid is contained in the solid.

Wagner's Theorem
A graph H is a minor of a graph G if H is obtained from G by taking a subgraph and collapsing some edges.

THEOREM. A graph is planar if and only if it does not contain K_{5} or $K_{3,3}$ as a minor.

Fairy's Theorem
THEOREM. Every planar graph can be drawn in the plane using only straight lines.
The proof uses the art gallery theorem...

Other Surfaces
What are the largest m, n so K_{n} and $K_{m, n}$ can be drawn without crossings on a Möbius strip

or a torus?

$$
\begin{aligned}
& 13.2 \text { Colorng }_{\text {GRAPHS }}
\end{aligned}
$$

The four Color Problem
Show that, given any map in the plane, you can color it with four colors so that adjacent regions have different colors.

Notes. (i) Each region must be a connected "blob".
(ii) "Adjacent" means the regions meet in a segment (not just a corner).
Why are these caveats needed?

Is there a map that really requires 4 colors?

The Four Color Problem
How many colors are needed?

Hint: Look at Nevada.

The Four Color Problem
How many colors are needed?

For more challenges: nikdi.com

The four Color Problem
First posed in 1852 by Guthrie. Many tried to solve it. Alfred Kempe (1879) and Tether GuthrieTait (1880) both gave solutions that stood for 11 years.
Lewis Carroll wrote about it:
" A is to draw a fictitious map divided into counties.
B is to color it (or rather mark the counties with names of colours) using as few colours as possible.
Two adjacent counties must have different colours.
A's object is to force B to use as many colours as possible. How many can he force B to use?"
The problem was solved in 1976 by Appel and Haken. It was the first major theorem proven in large part by computer.
The proof has recently, been simplified by Robin Thomas (GaTech) and his collaborators (still using computers).

Back to Graphs
Given a map, we get a graph $G(V, E)$ where

$$
V=\{r e g i o n s\}
$$

$E=$ \{pairs of adjacent regions\}

If the map is planar, then the graph is planar.

Coloring the map corresponds to coloring the vertices of the graph so that adjacent vertices have different colors.

Graph Coloring
A coloring of a graph is an assignment of colors to each of the vertices so that adjacent vertices have different colors.

The chromatic number $\chi(G)$ of a graph G is the smallest number of colors needed for a coloring of G.
FACT. $1 \leq x(G) \leq|V|$
FAct. If G is isomorphic to H, then $\chi(G)=\chi(G)$.
FACT. $X\left(K_{n}\right)=n, \chi\left(K_{m, n}\right)=2$, and $X\left(C_{n}\right)= \begin{cases}2 & n \text { even } \\ 3 & n \text { odd. }\end{cases}$
FAct. If H is a subgraph of G then $\chi(H) \leq \chi(G)$
FAcT. If G has a coloring with n colors, then $\chi(G) \leq n$.

The Four Color Theorem
Theorem. If G is planar, then $X(G) \leq 4$.

Note: There is still no polynomial time algorithm for finding a coloring with 4 colors.

Applications

1. Sudoku. A vertex for each little square.

An edge for two squares in same row, col, or 3×3 str.
2. Radio Frequencies. Avertex for each radio station.

An edge between stations that are near eachother.
3. Scheduling. Example: Say there are 10 students taking
(1) Physics, Math, IE
(6) Physics, Gedogy
(2) Physics, Econ, Geology
(7) Business, Stat
(3) Geology, Business
(8) Math, Geology
(4) Stat, Econ
(9) Physics, Comp Sci, Stat
(5) Math, Business
(10) Physics, Econ, CompSci

What is the minimum number of final exam periods needed?

Six Colors Suffice
Proposition. If G is a planar graph then $X(G) \leq 6$.

Degrees and Colors
Proposition. For any graph G :

$$
\chi(G) \leq(\text { largest degree of a vertex of } G)+1
$$

Proof. Same as above.

Computing χ
To show that $\chi(G)=n$, we generally have to show two things:
(1) $\chi(G) \leq n$

Some possible reasons:

- G has n vertices
- G is bipartite
- G is planar
- Largest vertex degree is $n+1$
- We know an explicit coloring with n vertices.
(2) $x(G) \geqslant n$

Some possible reasons:

- G contains H and $X(H)=n$
- G contains H with $X(H)=n-1$ and a vertex adjacent to each vertex of H (cf. Nevada)

More Coloring Robilems

SCHEDULING
There are 10 students in the following classes:
Physics: Annie, Bob, Florence, Ingrid, Joe Math: Annie, Elsa, Howard Engineering: Annie
Geology: Bob, Cameron, Florence, Howard Economics: Bob, Dylan, Joe
Business: Cameron, Elsa, Gordon Statistics: Dylan, Gordon, Ingrid Basket Weaving: Ingrid, Joe

What is the minimum number of final exam periods needed?

Five Colors Suffice
Theorem. If G is a planar graph, then $X(G) \leq 5$.
Proof. Induction on \# vertices again.
Say G is a planar graph with n vertices.
 As before, delete a vertex v of degree $\leqslant 5$. Color $G-v$ with 5 colors. Can we reinsert v?

Case 1. There is no path from v_{1} to v_{2} using only red and green vertices. In this case, starting at V_{1}, swap red and green. Then color v red.
Case 2. There is such a path. Similar.

