MATH 2602 LINEAR AND DISCRETE MATHEMATICS

PROF. MARGALIT

WHAT IS DISCRETE MATH?

dis·crete I) [dih-skreet] ? Show IPA

adjective

- apart or detached from others; separate; distinct: six discrete parts.
- consisting of or characterized by distinct or individual parts; discontinuous.
- Mathematics .
 - a. (of a topology or topological space) having the property that every subset is an open <u>set</u>.
 - b. defined only for an isolated set of points: a discrete variable.
 - using only arithmetic and <u>algebra</u>; not involving calculus: discrete methods.

dictionary.com

Discrete is the opposite of continuous.

WHAT IS DISCRETE MATH?

WHAT IS DISCRETE MATH? CONTINUOUS DISCRETE real numbers integers counting measuring computer images ideal shapes particle Wave differential eqn recurrence reln. probability graph theory algorithms calculus

CHAPTER Ó YES, THERE ARE PROOFS!

KNIGHTS AND KNAVES

- 1 Anna says Elsa is a knight. Else says she is a Knight. What can you conclude?
- 2. Anna says at least one of us is a knowe. What can you conclude?

O.1 COMPOUND STATEMENTS

STATEMENTS

A mathematical statement is a declarative sentence that is either true or false.

Examples. 1 is a prime number. It is a rational number. If 1+1=3 then 5=7

Non-examples. What is my name? Solve for X: 2X=10. Meep meep. Et cetera.

We sometimes represent a Statement try a leller.

THIS IS FALSE

Consider the following sentence:

This statement is false.

Is this a mathematical statement? Is it true or false?

NEW STATEMENTS FROM OLD AND. pAq is true if both are. OR. pVq is true if at least one is. CAUTION! Or has different uses in English: can have soup or salad need a license or passport Not. 7p is true if p isn't. "it is not the case that p"

IMPLICATIONS

IMPLICATIONS

CONVERSE. The converse of $p \rightarrow q$ is The converse of a true statement can be true or false. CONTRAPOSITIVE. The contrapositive of p->q is The contrapositive is equivalent to the original statement! If you won you got a medal. If you didn't get a medal, you didn't win. NEGATION. $\neg(p \rightarrow q) \equiv p \land \neg q$ DOUBLE MPLICATION. $(p \rightarrow q) \land (q \rightarrow p)$ is written You got a medal if and only if you won.

QUANTIFIERS

First, a propositional function is a statement with a variable that becomes a mathematical statement when a value is given to the variable: n is even We can also turn a propositional function into a mathematical statement using quantifiers. For all. $\forall n \in \mathbb{Z}$ (n is even) There exists. $\exists n \in \mathbb{Z}$ (n is even)

and combinations: $\forall n \in \mathbb{Z} \exists m \in \mathbb{Z} (n+m \text{ is even}) \\ \exists m \in \mathbb{Z} \forall n \in \mathbb{Z} (n+m \text{ is even}) \text{ etc.}$

NEGATION. ¬(∃m∀n (n+m is even))≡ ∀m∃n (n+m is odd)

THE SECRET \forall

When we say:
If n is even, then
$$n+1$$
 is odd.
We really mean:
 $\forall n (n even \rightarrow n+1 \text{ odd})$
So for instance the negation is:
 $\exists n \neg (n even \rightarrow n+1 \text{ odd})$
 $\exists n (n even \land n+1 even)$

NEGATION

Which of the following statements are true?

(i) If f: R→R is an even function and g: R→R is an odd function then f+q is an odd function.
(ii) If f: R→R is an even function and g: R→R is an odd function then fg is an odd function.
(iii) ∃ x ∈ R (x²<0)
(iv) ∃ x ∈ R ∃ y ∈ R (3x-2y=1 Λ x+2y=3)
(v) ∃ X ∈ R ∃ y ∈ R (x+y=0 Λ x+y=1)
(vi) ∃ N ∈ Z ∀ m ∈ Z (m ≤ N)
(vii) ∀ x ∈ R ∀ y ∈ R ((x ≥ 0 ∧ y ≥ 0) → xy ≥ 0)

Write the negation of each false statement.

DIRECT PROOFS

- Prove each of the following propositions.
- 1. For all m∈Z, m²+m is even.
- 2. If x ≥ 10 then x⁴ > 100x
- 3. The product of two odd functions is even.

PROOFS BY CASES

- 1. If $4 \le n \le 13$, then n is the sum of two primes.
- 2. For all $n \in \mathbb{Z}$, $n^2 n \ge 0$.
- 3. It is possible to pay any (integer) number of dollars at least 6 with #3 and #4 bills.

PROOFS BY CONTRADICTION AND CONTRAPOSITIVE

Prove each of the following propositions.

1. The square root of an irrational number is irrational.

2. If 6 people need to eat 50 skittles, then someone must eat more than 8 skittles.

3. The function VX is not a rational function.

VA IS IRRATIONAL

Prop. V4 is irrational. Proof. Suppose, for contradiction that VA = Plq, in lowest terms. Then $4 = p^2/q^2$ so $4q^2 = p^2$ So piseven so p^2 is divis. by 4. so $p^2 = 4r^2$ 50 $4q^2 = 4r^2$ 50 $q^2 = r^2$ 50 q=(so Plg = 2r/r is not in lowest terms. This is a contradiction.

MORE PROOFS

Prove or disprove each of the following propositions.

- 1. No two consecutive integers are prime.
- 2. V3 is irrational.
- 3. For all $X, Y \in \mathbb{R}$, $|X+Y| \leq |X|+|Y|$.
- 4. It is possible to tile a chessboard with dominos after two opposite corners have been removed.

TRUTH TABLES

Is the following proposition a tautology, a contradiction, or neither?

 $(\neg \rho \Lambda q) \Lambda (\rho \vee \neg q)$ Can you verify your answer without truth tables?

DISJUNCTIVE NORMAL FORM

Can you find some statement S with this truth table? Hint: disjunctive normal form Can you find a short statement S with this truth table? Hint: use

DISJUNCTIVE NORMAL FORM

Is disjunctive normal form unique? In other words, is it possible to find different disjunctive normal forms that are equivalent?

BASIC LOGICAL EQUIVALENCES

LOGICAL EQUIVALENCES

Show the following equivalences:

$$\begin{array}{l} \neg(\rho \rightarrow q) \equiv \rho \wedge \neg q \\ (\rho \rightarrow q) \wedge (\rho \rightarrow r) \equiv \rho \rightarrow (q \wedge r) \\ \neg (\rho \vee (\neg p \wedge q)) \equiv \neg p \wedge \neg q \end{array}$$

TAUTOLOGIES

Show that the following statements are tautologies.

1.
$$(\rho \Lambda q) \longrightarrow (\rho \vee q)$$

2. $\neg \rho \Lambda (\rho \vee q) \longrightarrow q$

TAUTOLOGIES

Determine whether or not the following statements are tautologies.

$$(\neg \rho \land (\rho \rightarrow q)) \longrightarrow \neg q$$
$$(\neg q \land (\rho \rightarrow q)) \longrightarrow \neg p$$

REFLEXIVE

Which of the following are reflexive relations on the set of people in the world?

a lives within a mile of b a is taller than b a has the Same birthday as b a has a common grandparent with b a lives in the Same country as b

SYMMETRIC

Which of the following are symmetric relations on the set of people in the world?

a lives within a mile of b a is taller than b a has the Same birthday as b a has a common grandparent with b a lives in the Same country as b

TRANSITIVE

Which of the following are transitive relations on the set of people in the world?

a lives within a mile of b a is taller than b a has the Same birthday as b a has a common grandparent with b a lives in the same country as b

EQUIVALENCE RELATIONS

Which of the following are equivalence relations on the set of people in the world?

a lives within a mile of b a is taller than b a has the Same birthday as b a has a common grandparent with b a lives in the same country as b

For all equivalence relations, find the quotient sets.

$$\leq \\ \neq \\ \{(x,y) \mid | x-y| \leq 1 \} \\ \{(x,y) \mid x-y \text{ is divisible by 10} \} \\ \{(x,y) \mid x-y \text{ is divisible by 2} \}$$

For all equivalence relations, find the quotient set.

FUNCTIONS

Is this a function?

ONTO

Which of the following functions are onto? 1. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 4x + 5$ 2. $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = \sin(x)$ $3.f: \mathbb{R} \rightarrow \mathbb{Z}, f(x) = \lceil x \rceil$ 4. $f: \mathbb{Z} \rightarrow \mathbb{Z}$, f(x) = 2x5. $f: \{people\} \rightarrow \{A, \dots, Z\}, f(x) = first initial of X.$ When a function is not onto, describe the image.

ONE-TO-ONE

Which of the following functions are one-to-one?

1.
$$f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = x^2 - 4x + 5$$

2. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = \sin(x)$

3.
$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$
, $f(x) = \lceil x \rceil$

4.
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x$$

5. $f: \{people\} \rightarrow \{A, ..., Z\}, f(x) = first initial of X.$

When a function is not one-to-one, find the largest domain on which it is.

IDENTITY FUNCTION

Let A be a set. The identity function is always...

A. one-to-one B. onto C. both D. neither

INVERSES

Find the inverses of the following functions.

 $f(x) = x^{2}$ f(x) = 3x + 7 $f(x) = \frac{x}{x-1}$ $f(x) = \ln(2x - 5)$

COMPOSITION

Say
$$f(x) = \lceil x \rceil$$
 and $g(x) = \sqrt{x}$.
What is the domain of $f \circ q$?
What is $f \circ g(10)$?

Find the inverse of
$$f(x) = (2x+8)^3$$
 and check $f \cdot f'$ is the identity.

Hotel Infinity has rooms numbered 1,2,3,...

Today, every room is occupied. Someone walks into the lobby and asks for a room. Can the hotel accommodate her?

Hotel Infinity is so successful they open Hotel Infinity 2, just like the first.

There is a fire in Hotel Infinity 2. Can Hotel Infinity accommodate the overflow?

Now there is Hotel Infinity 2, Hotel Infinity 3, etc. All the hotels except the first burn to the ground. Can Hotel Infinity accommodate the overflow?

Show that the following sets are countable:

N U {0} N U N N U N U N U...

INTERVALS

Show that the following pairs of sets have the same Cardinalities.

(0,1) and (1,3) $(-\infty,\infty)$ and $(0,\infty)$

CANTOR DIAGONALIZATION

THEOREM. IR is uncountable.

RATIONALS

Is Q countable? What about $\mathbb{R}\setminus\mathbb{Q}$?

What about the Cantor set?

LINES AND SQUARES Show that $|[0,1]| = |[0,1]^2|$.

COUNTING SOLDIERS

A general lines her troops in rows of 9, then 10, then 11. Each time, there are leftovers: 1, 2, and 4, respectively.

Can the general tell just from this information exactly how many soldiers she has?

Compute: 1234567 (mod 10) 1027581 (mod 2) 624897 (mod 3) 169 (mod 24)

Compute: 10

Solve:
$$X + 7 = 2 \pmod{19}$$

MULTIPLICATIVE INVERSES

Does every number have a multiplicative inverse mod n?

Solve:
$$2x \equiv 1 \pmod{9}$$

 $7x \equiv 1 \pmod{100}$
 $7x \equiv 2 \pmod{100}$
 $7x \equiv 3 \pmod{100}$

CHINESE REMAINDER THEOREM

Solve:
$$X \equiv 1 \pmod{9}$$

 $X \equiv 2 \pmod{10}$
 $X \equiv 4 \pmod{11}$

$$-1$$
 + $-11 = 1$

CHINESE REMAINDER THEOREM Solve: X=1 (mod 9) Hint: 6.90-49.11=1 $X \equiv 2 \pmod{10}$ $X \equiv 4 \pmod{11}$ First solve just the first two, mod 90. Since $1 \cdot 10 - 1 \cdot 9 = 1$ We have: $1 \cdot (1 \cdot 10) - 2(1 \cdot 9) = -8 = 82 \pmod{90}$ Now solve: $X \equiv 82 \pmod{90}$ $X \equiv 4 \pmod{11}$ Since 6.90 - 49.11 = 1 we have: $4(6.90) - 82(49.11) = -42,038 \equiv 532 \pmod{990}$

Prove the following statements by induction.
(1)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 $n = 1$
(2) $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ $n = 1$
(3) $\sum_{i=1}^{n} (2i-1) = ??$ $n = 1$

TOWERS OF HANOL

Use induction to show that it is possible to solve the Towers of Hanoi puzzle with n disks.

Prove the following statements by induction.
(1)
$$7^n - 1$$
 is divisible by 6 for all $n \ge 0$
(2) $n^2 + 2n$ is divisible by 3 for all $n \ge 0$
(3) $(2n)!$ is divisible by 2^n for $n \ge 0$.

Prove the following statements by induction.

(1)
$$n! > 2^{n}$$
 $n = 4$
(2) $\frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2}$ $n > 1$
(3) $(1 + \frac{1}{2})^{n} > 1 + \frac{1}{2}$ $n > 0.$
(4) $(1 + x)^{n} > 1 + nx$ $n > 0$

Prove the following statements by induction.

(2) If n lines in IR² have no triple intersections then they divide the plane into n+1 regions.
(3) F₁ + F₃ + ... + F_{2n-1} = F_{2n}

OTHER INDUCTIONS

Which of the following are correct forms of induction?

- (1) If P(n_o) is true and P(k+1) is true whenever
 P(k) and P(k-1) are true (k > n_o) then P(n) is true for n > n_o.
- (z) If P(no) is true and P(k) is true whenever P(no),..., P(K-1) are true (K > no) then P(n) is true for all n≥no
- (3) If P(5) is true and P(K) is true whenever P(K-1) is true then P(n) is true for all n > 5.

MORE INDUCTION

Prove the following statements by induction.

- (1) Every natural number has a prime factorization.
- (2) In a convex n-gon one can draw at most n-2. non-intersecting diagonals.
- (3) The number of ways of breaking a 2×n candy bar into 2×1 pieces is Fn+1

TOWERS OF HANOI

How many moves are needed to solve the towers of Hanoi puzzle with n disks?

SOLVING RECURRENCE RELATIONS

Use induction to show that the purported solutions are really solutions.

(1)
$$a_n = a_{n-1} + 2$$
, $a_o = 1$
Solution: $a_n = 2n + 1$
(2) $a_n = 2a_{n-1} + 1$, $a_o = 1$
Solution: ??

SECOND ORDER HOMOGENEOUS LINEAR RECURRENCE RELATIONS

Solve: $a_n = a_{n-2}, a_0 = 1, a_1 = 3.$

$$a_n = 6a_{n-1} - 9a_{n-2}, a_0 = 1, a_1 = 0$$

 $a_n = 2a_{n-1} + a_{n-2}, a_o = 0, a_1 = 1$

MORE PROBLEMS

() Solve
$$a_n = 9a_{n-2}$$
 where
(a) $a_0 = 6, a_1 = 12$
(b) $a_0 = 6, a_2 = 54$
(c) $a_0 = 6, a_2 = 10$

② Solve
$$a_n = 8a_{n-1} - |6a_{n-2}, a_0 = |, a_1 = |6$$

③ Solve $5a_n = 11a_{n-1} - 2a_{n-2}, a_0 = 2, a_1 = -8$.

SECOND ORDER NONHOMOGENEOUS LINEAR RECURRENCE RELATIONS

Solve:
$$a_n = 2a_{n-1} + 1$$
, $a_1 = 1$
 $a_n = 3a_{n-1} + 5 \cdot 7^n$, $a_0 = 2$.
 $a_n = -a_{n-1} + n$, $a_0 = \frac{1}{4}$.
 $a_n = 2a_{n-1} - \frac{n}{3}$, $a_0 = 1$

MORE PROBLEMS

() Solve
$$a_n = 5a_{n-1} - 6a_{n-2} + 6 \cdot 4^n$$

(2) Solve
$$a_n = a_{n-1} + 3n^2$$
, $a_0 = 7$

By the way, there is another method for solving #2, the method of undetermined coefficients. Idea: recursively substitute: $a_n = a_0 + \overline{\xi_1} f(i) = 7 + 3 \overline{\Sigma} i^2 = \cdots$

BIGO

We say that "f is big 0 of g" and write

$$f = O(g)$$
 or $f \in O(g)$
if there is a natural number n_0 and a positive real number
c such that
 $|f(n)| \leq c |g(n)|$
for $n \geq n_0$.

First examples: ①
$$f(n) = n^2$$
, $g(n) = 7n^2$
② $f(n) = 4n+2$, $g(n) = n$
③ $f(n) = n^2$, $g(n) = n^2 + 2n +$
④ $f(n) = n$, $g(n) = \sqrt{n}$

LIMIT THEOREM

THEOREM: Let fig be functions
$$\mathbb{N} \to [0,\infty)$$

(a) $|\int_{n \to \infty}^{lim} f(n)/g(n) = 0$, then $f < g$
(b) $|\int_{n \to \infty}^{lim} \frac{f(n)}{g(n)} = \infty$, then $g < f$
(c) $|\int_{n \to \infty}^{lim} \frac{f(n)}{g(n)} = \lfloor \neq 0$, then $f \neq g$

1) Compare n! & n"

2) Compare n! & 2"

COMBINING FUNCTIONS Theorem: Let f,g be functions $\mathbb{N} \rightarrow \mathbb{R}$. (a) If $f \in \mathcal{O}(F)$, then $f + F \in \mathcal{O}(F)$ (b) If $f \in \mathcal{O}(F)$ and $g \in \mathcal{O}(G)$ then $fg \in \mathcal{O}(FG)$.

POLYNOMIALS

Theorem: Let $f(n) = adn^d + \dots + a_n + a_0$ be a degree of polynomial $(ad \neq 0)$. Then $f(n) \succeq n^d$.

MORE COMPARISONS

Theorem: (a) If
$$k < l$$
, then $n^k < n^l$
(b) If $k > 1$, then $\log_k n < n$
(c) If $k > 0$, then $n^k < 2^k$

HIERARCHY

 $1 < \log n < n < n^{k} < k^{n} < n^{!} < n^{"}$

const < log < linear < poly < exp < fact < tower

MORE DETAILED HIERARCHY $1 < \log n < m < \frac{n}{\log n} < n < n \log n < n^{3/2}$ $\langle n^2 \rangle \langle n^3 \rangle \cdots$ < 2" < 3" < ... < n! $< n^n < n^{n^2} < \cdots$

COMPARING DIFFERENT ORDERS										
_	7	J 10	50	100	300	1000				
Ē	- Dr	50	250	500	1500	5,000	# Usecs Since big bang: ~10 ²⁴ # protons in the Known universe: ~10 ¹²⁶			
n	ı log n	33	282	665	2469	9966				
ſ	12	100	2500	10,000	90,000	1,000,000				
r	13	1,000	125,000	1 mil	27 mil	1 bil				
2	n -	10 ²⁴	16 digits	31 dig.	91 dig.	302 dig.				
r	ı!	3.6 mil	65 dig.	161 dig.	623 dig.	unimaginable				
M	l	10 bil.	85 dig.	201 dig.	744 dig.	Unimaginable	D. Harel, Algorithmics			

COMPARING DIFFERENT ORDERS How long would it take at 1 step per usec?											
		10	20	50	100	300					
_	n²	1/10,000 Sec.	1/2500 Sec.	1/400 Sec	1/100 Sec.	9/100 Sec.					
	n ⁵	1/10 Sec.	3.2 sec	5.2 min	2.8 hr	28.1 days					
	2 ⁿ	1/1,000 Sec	1 Sec	35.7 yr	400 trillion cent.	75 digit # of centuries					
	n ⁿ	2.8 hr	3.3 trillion yr	70 digit # of centuries	185 digit # of centuries	728 digit # of centuries.					
						D Uprol Algorithmics					

D. Harel, Algorithmics

PHONE NUMBERS

Are there two students at Georgia. Tech with the same last 4 digits of their phone number?

HAIR

Are there two non-bald people in Atlanta with the same number of hairs on their heads?

THE PIGEONHOLE PRINCIPLE

If n objects are put into m boxes, and n>m, then at least one box will have multiple objects.

Johann Peter Gustav Lejeune Dirichlet

PIGEONHOLE PROBLEMS

- 1. Show that, given 5 points in a unit square, there are two points within ^{VZ/2} of each other.
- 2. Show that, given any 11 integers, there is a pair of numbers Whose difference is divisible by 10.
- 3. Show that, at any party, there are always two people with the same number of friends.

PIGEONHOLE PROBLEMS

4. Take a chessboard with two opposite corners removed. Con you cover it with dominos? Hint: The dominos give a bijection between black squares and white squares.

- 5. On a 5×5 chessboard, there is one flea in each square. Each flea jumps to an adjacent square. Are there now two fleas in the same square?
- 6. Arrange the numbers 1,...,10 on a circle in any order. Show that there are 3 consecutive numbers that add to 17 or more.

STRONG PIGEONHOLE

Our class has 68 students. What is the biggest N so that we know that some month has N birthdays?

The challenge with counting is that we aren't usually told in advance which rules to use

1. How many 3 digit numbers are there?

2. How many 3 digit numbers are there with no repeated digits? 3. How many 3 digit numbers are there with the ith digit equal to i for some i.

4. How many functions are there $A \rightarrow B$ if |A|=m, |B|=n?

5. How many injective functions are there A→B if [Al=m, IB]=n?
6. How many subsets of A are there if [Al=n?

- 7. How many even 4 digit numbers are there with no repeated digits?
- 8. How many odd 4 digit numbers are there with no repeated digits? (Harder!)
- 9. How many ways are there to place a domino on a chessboard?

- 10. How many bit strings are there that have length n and begin and/or end with a 1?
- 11. How many different dominos are there?
- 12. How many arrangements are there of 6 men and 4 women at a round table if no women sit together?

- 13. Given 20 integers, show there is a pair whose difference is divisible by 19.
- 14. If we want to label the chairs in a room by one letter and one number from 1 to 100, how many labels are there?
- 15. How many distinct alphanumeric passcodes are there if each passcode has 6-8 characters and at least one digit?
- 16. In how many ways can a best-of-5 series go down?
- 17. Given 5 points on a sphere, how many necessarily lie on the same hemisphere?

In a club with 10 people, how many ways are there to choose a president, vice president, and secretary?

How many permutations of 4 objects?

PERMUTATION PROBLEMS

A group has n men and n women. In how many ways can they be lined up so that men and women atternate?

PERMUTATION PROBLEMS

How many ways are there to seat 6 boys and 4 girls at a round table if no two girls sit together?

Note: A rotation of a configuration is considered the same as the original configuration.

PERMUTATION PROBLEMS

Arrange all 26 letters of the alphabet in a row.

a) How many such "words" are there?

b) How many contain HAMLET as a subword, e.g.: VRPKGCHAMLETBDFIZWJNQOSYUX

c) How many have exactly 4 letters between H and T?

COMBINATIONS

In a club with 10 people, how many ways to choose a committee with 3 members?

MARBLES AND BOXES

Distinguishable marbles: Say we want to put a red, a green, and a blue marble into 5 boxes. How many ways?

Indistinguishable marbles: Say we want to put 3 indistinguishable marbles in 5 boxes. How many ways?

COMBINATION PROBLEMS

1. Five people need a ride. My car holds 4. In how many ways can I choose who gets a nide?

2. If you toss a coin 7 times, in how many ways can you get 4 heads?

3. The House of Representatives has 435 representatives. How many 4-person committees can there be?

MORE PROBLEMS

- 1. How many bit strings are there with fifteen O's and six 1's if every 1 is followed by a 0?
 - Note: Too hard if you think of it as a sequence of 21 tasks.

MORE PROBLEMS

2. How many strings in the letters a, b, and c have length 10 and exactly 4 a's?

Again, don't choose the 10 letters one by one.

3. A lottery ticket has six numbers from 1 to 40. How many different tickets are there?

The lotteny agency chooses six winning numbers. How many different possible lottery tickets have exactly four winning numbers?

5. Determine the number of possible softball teams (= 9 people) can be made from a group of 10 men, /2 women, and 17 children if:
(a) there are no restrictions
(b) there must be 3 men, 3 women, 3 children
(c) the team must be all men, all women, or all children
(d) the team cannot have both men and women.

MORE PROBLEMS

6. In how many ways can you put 5 indistiguishable red balls and
8 indistinguishable green balls into 20 boxes if
(a) there can be at most one ball per box
(b) there can be at most one ball of each color per box.

MORE PROBLEMS

7. How many poker hands are: (a) total (b) 4 of a kind (c) flush (d) straight (e) straight flush (f) full house

```
(9) 3 of a kind
(h) 2-pair
(i) pair
(j) neither flushes
straights, full house
3 of a kind, 2 pair, pair
```

PROBABILITY

You have 3 cards. One is red on both sides, one is black on both sides, and one has a red side and a black side. You pick one card randomly and put it on the table. Its top side is red. What is the probability the other side is red?

PROBABILITY

What is the probability that...

1. You toss a coin 5 times. What is the probability of getting 4 heads?

2. What is the probability of correctly guessing the winners in a 64-team single elimination tournament? (Assume every team has a 50% chance of winning each game)

3. An urn has 4 red balls, 3 green balls. You pull one ball at random. What is the probability of pulling a green ball?

Suppose you pull one ball, replace it, then pull another ball. What is the probability of pulling two balls of the Same color?

Same urn (4 red, 3 green). Now suppose you pull one ball, don't replace it, and pull another ball. What is the probability of getting two balls of the Same color?

4. In poker, what is the probability of dealing a 4-of-a-kind?

What about a full house?

APPLYING PROBABILITY RULES

MUTUAL EXCLUSIVITY

Two events A and B are mutually exclusive if $A \cap B = \phi$

Events $A_{1,...}, A_{n}$ are pairwise mutually exclusive if $A_{i} \cap A_{j} = \phi$ whenever $i \neq j$.

If A,..., An are pairwise mutually exclusive events, then P(A, u..., An) = P(A,)+...+P(An) (addition rule)

EXAMPLE: A number from 1 to 100 is chosen at random. What is the probability that the number is divisible by 7 or 30?

APPLYING PROBABILITY RULES

- 1. What is the probability that a length 10 bit string (chosen at random) has at least one zero? at least two zeros?
- 2. What is the probability that a poker hand (dealt at random) is a flush? a straight? royal flush?

THE MONTY HALL PROBLEM

"Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the other doors, opens another door, say No. 3, which has a goat. He then says to you, 'Do you want to pick door No. 2?' Is it to your advantage to take the switch?"

A coin is flipped twice. The first flip is heads. What is the probability that both flips are heads?

Intuition:

Basic probability:

Conditional probability:

I have two kids. One is a boy. What is the probability I have two boys?

1. An urn has 10 white, 5 yellow, and 10 black marbles. A marble is chosen at random. We are told it is not black. What is the probability it is yellow?

2. We deal bridge hands at random to N,S,E,W. Together, N and S have 8 spades. What is the probability that E has 3 spades?

Alice and Bob each roll a die. We are told that Alice rolled a higher number. What is the probability that Alice rolled a 3?

INDEPENDENCE

Since $P(B|A) = \frac{P(B \cap A)}{P(A)}$ we can say A and B are independent if: $P(A \cap B) = P(A)P(B)$

INDEPENDENCE

Events A and B are independent if P(B/A)=P(B)

A CONDITIONAL PROBABILITY PROBLEM

LAW OF TOTAL PROBABILITY

Say that events $A_{1,...,A_{n}}$ form a partition of the sample space S, that is, the A_{i} are mutually exclusive $(A_{i} \cap A_{j} = \emptyset$ for $i \neq j$) and $A_{i} \cup \cdots \cup A_{n} = S$.

Let $X \subseteq S$ be any event. Then $P(X) = P(A_1)P(X|A_1) + \dots + P(A_n)P(X|A_n)$

BAYES' FORMULA

How is P(A|B) related to P(B|A)? THEOREM: $P(B|A) = \frac{P(B)P(A|B)}{P(A)}$

PROOF:

EXAMPLE. In the light bulb problem, say a randomly selected light bulb is defective. What is the probability it came from A?

BAYES' FORMULA

EXAMPLE. Coin A comes up heads ¹/4 of the time. Coin B comes up heads ³/4 of the time. We choose a coin at random and flip it twice. If we get two heads, what is the probability coin B was chosen?

BAYES' FORMULA
Computing the denominator with the law of total probability

$$A_{i,...,A_n}$$
 pairwise mutually exclusive events with $A_i \cup \dots \cup A_n = S$
and $P(A_i) \ge 0$ for all i' . Let X be an event with $P(X) \ge 0$.
Then, for each j , we have:
 $P(A_j | X) = \frac{P(A_j)P(X | A_j)}{P(X)}$
where $P(X) = P(A_i)P(X | A_i) + \dots + P(A_n)P(X | A_n)$

$$P(A_3|X)$$
 big
 $P(A_2|X)$ small
 $P(A_4|X) = 0.$

EXAMPLE. Do a variant of the coin problem with 3 or more coins

BAYES' FORMULA

PROBLEM. You have 3 cards. One is red on both sides, one is black on both sides, and one has a red side and a black side. You pick one card randomly and put it on the table. Its top side is red. What is the probability the other side is red?

BAYES' FORMULA

PROBLEM. There are 3 ums, A, B, and C that have 2,4, and 8 red marbles and 8, 6, and 2 black marbles, respectively. A random card is picked from a deck. If the card is black we choose a marble from A, if it is a diamond we choose a marble from B, and otherwise choose a marble from C.

(a) What is the probability that a red marble gets drawn?

(b) If we know a red marble was drawn, what is the probability the card was hearts? diamonds?

Draw the picture!

REPETITIONS

QUESTION: How many ways are there to put r identical marbles into n boxes, if you are allowed to put more than One marble per box?

First try 3 marbles into 10 boxes. Case 1: All in same box $\binom{10}{1}$ Case 2: Two in one box, one in another 10.9 Case 3: All different boxes $\binom{10}{3}=120$ Addition rule $\sim 120+90+10=220$.

What about 10 marbles in 3 boxes? Lots of cases! What to do?

STARS AND BARS

Can answer the last question by looking at it the right way:

The number of ways of putting 10 marbles into 3 boxes is the same as:

the number of binary strings with 10 zeros, 2 ones (or 10 stars, 2 bars)

How many such strings are there?

(12)=66 (choose which of the 12 spots will be stars.)

REPETITIONS

QUESTION: How many ways are there to put r identical marbles into n boxes, if you are allowed to put more than One marble per box?

ANSWER: This is the same as the number of strings with r stars and n-1 bars: $\binom{n+r-1}{r} = \binom{n+r-1}{n-1}$

REPETITIONS, PERMUTATIONS, AND COMBINATIONS

How many ways to put r marbles in n boxes if ...

EXAMPLE: How many ways are there to choose 15 cans of Soda from a cooler with (lots of) Coke, Dr. Pepper, Mtn Dew, RC cola, and Mr. Pibb?

FURTHER: What if I insist on at least 3 Cokes and exactly one Mr. Pibb?

EXAMPLE. In how many ways can we choose 4 nonnegative integers a, b, c, and d so that a+b+c+d=100?

What if a,b,c, and d are natural numbers?

GENERALIZED PERMUTATIONS EXAMPLE. How many ways are there to arrange the letters of SYZYGY?

EXAMPLE. What about MISSISSIPPI?

GENERALIZED PERMUTATIONS

In general, say we have n objects that fall into k groups, with ni objects in the ith group. Two objects in the same group are indistinguishable, but objects in different groups are distinguishable. In how many ways can we order the objects?

$$P(n; n_1, ..., n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

This is also the coefficient of $x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k}$ in $(X_1 + X_2 + \cdots + X_k)^n$

GENERALIZED PERMUTATIONS

EXAMPLE. Suppose there are 100 spots in the showroom of a car dealership. There are 15 (identical) sports cars, 25 compact cars, 30 station wagons, and 20 vans. In how many ways can the cars be parked?

MORE PROBLEMS

- 1. How many numbers less than 1,000,000 have the sum of their digits equal to 19?
- 2. A shelf holds 12 books. How many ways to choose 5 books so no adjacent books are chosen?
- 3. You want to visit 5 towns twice each, but there is one town you don't want to visit twice in a row. How many different travel itineraries are there?

THE BINOMIAL THEOREM

THEOREM. For any x and y and any natural number n, we have:

$$(X+\gamma)^{n} = \sum_{k=0}^{n} {n \choose k} \chi^{n-k} \gamma^{k}$$

$$= {n \choose 0} \chi^{n} \gamma^{0} + {n \choose 1} \chi^{n-1} \gamma^{1} + \dots + {n \choose n} \chi^{0} \gamma^{n}$$

THE BINOMIAL THEOREM

PROBLEM. Expand $(2x^3+y)^5$ and simplify.

PROBLEM. Expand
$$(X - \frac{1}{x})^6$$
 and simplify.

PROBLEM. Find the coefficient of
$$x^{15}$$
 in $(x^2 - \frac{x}{3})^{11}$.

THEOREM. The k^{th} entry in the nth row of Pascal's triangle is $\binom{n}{k}$ for $n \ge 0$ and $0 \le k \le n$. Note: The top row is considered to be row 0, and the leftmost entry is entry 0.

PROOF.

PASCAL'S TRIANGLE What is the sum of the entries in the nth row? = 1+1 = 1+2+1 = 1+3+3+1= •

THE BINOMIAL THEOREM					
	$(\chi + \gamma)^n = \sum_{k=0}^n \binom{n}{k} \chi^{n-k} \gamma^k$				
plug in	to prove				
X=1, Y=-1	Inclusion - exclusion principle				
X=10, Y=1	$n^{\text{th}} row of$ P's $\Delta = 11^{\kappa}$				
X=1, Y=1	n^{th} row sum of P's $\Delta = 2^{n}$				
X=V2, Y=-1	VZ is irrational				

The Inclusion - Exclusion Principle THEOREM. $|A_1 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j|$ $+ \cdots + (-1)^{n+1} |A_1 \cap \cdots \cap A_n|$

PROOF:

Row SUMS IN PASCAL'S TRIANGLE

THEOREM. The sum of the entries in the nth row of Pascal's triangle is 2.

PROOF.

PASCAL'S TRIANGLE MOD 2

What about mod 3?

A CURIOUS PROBABILITY

QUESTION. A professor hands back exams randomly. What is the probability that no student gets their own exam?

ANSWER. 5 students ~ 10 students ~ 100 students ~

A derangement of n objects that have some natural order is a rearrangement of the objects so that no object is in its correct position.

QUESTION. How many are there? Call the number Dn.

n	Dn	P(Dn)	
1			What is the
2			What is the pattern?
3			
4			

A FORMULA FOR Dn

Let Ax be the permutations of *n* ordered objects with object k in the correct spot.

 $\mathcal{D}_n = \left(\bigcup_{k=1}^n \mathcal{A}_k\right)^c$

D4 =

D₄ =

DERANGEMENTS

PROBLEM. Fifteen people check coats at a party and at the end they are handed back randomly. How likely is it that... (a) Tim gets his coat back? (b) Jeremy gets his coat back? (c) Jeremy and Tim get their coats back?
(d) Jeremy and Tim get their coats back but no one else does? (e) The members of the Beatles get the right Set of coats back (maybe not in the right order)?
(f) Everyone gets their coat back?
(g) Exactly one person gets their coat back?
(h) Nobody gets their own coat back?
(i) At least one person gets their coat back?

A SAMPLE PROBLEM

Among you, your buddy, two mothers, and two sisters, some people hug. There are no hugs between buddies, mothers, or sisters. The other 5 people tell you they all hugged different numbers of people. How many people did you hug?

The Bridges of Konigsberg

Three House-Three Utility

Traveling Salesman

GRAPHS

A graph is a pair of sets V and E, where $V \neq \emptyset$ and each element of E is a pair of elements of V.

Write G=G(V,E).

The elements of V and E are called vertices and edges. EXAMPLE. V = Facebook users E = Friendships

THE HANDSHAKING LEMMA

PROPOSITION. The sum of the degrees of the vertices
of a pseudograph is an even number.
Specifically:
$$\sum_{v \in V} deg v = 2|E|$$

Leonhard Euler

HANDSHAKING LEMMA. The number of odd degree vertices of a pseudograph is even.

PROOF.

Revisit the hugging problem.

THE HANDSHAKING LEMMA

PROBLEM. A graph has 50 edges, 4 vertices of degree 2, 6 of degree 5, 8 of degree 4, all other vertices have degree 6. How many vertices does the graph have?

PROBLEM. Out of 24 curling players, 78 pairs have played on the same team. Show that one has played on the same team as 7 others. Show that one has played on the same team with no more than 6 others.

GRAPH SOMORPHISM

Which of the following pairs are isomorphic?

INVARIANTS OF GRAPHS

We can use the following "fingerprints" of graphs in order to tell if two graphs are different: (i) Number of vertices (ii) Number of edges (iii) Degree sequence etc.

It is possible for two graphs to have the same degree sequence and be nonisomorphic:

INVARIANTS OF GRAPHS

We can use the following "fingerprints" of graphs in order to tell if two graphs are different: (i) Number of vertices (ii) Number of edges (iii) Degree sequence etc.

It is possible for two graphs to have the same degree sequence and be nonisomorphic:

 $\{2, 2, 2, 1, 1\}$ $\{2, 2, 2, 1, 1\}$

EXAMPLES

Which of the following graphs are isomorphic?

d)

c) AFKMR STVXZ

THE KÖNIGSBERG BRIDGE PROBLEM

The Bridges of Konigsberg

Is it possible to take a walk, Cross each bridge exactly once, and return to where you started?

Or: Is the following pseudograph Eulerian?

CONNECTIVITY

We just argued that Eulerian graphs have no vertices of odd degree. What else? Eulerian graphs must also be connected. A pseudograph is connected if there is a walk between any two vertices.

connected

not connected

EULERIAN PSEUDOGRAPHS

THEOREM. A pseudograph is Eulerian if and only if it is connected and every vertex has even degree.

EULERIAN PSEUDOGRAPHS

For each pseudograph, find an Eulerian circuit if it exists.

HAMILTONIAN CYCLES

A Hamiltonian cycle in a pseudograph is a walk that visits each vertex exactly once:

Euler: each edge once Hamilton: each vertex once

Find one!

Note: A Hamiltonian cycle is isomorphic to an n-cycle.

Sir William Rowan Hamilton

HAMILTONIAN CYCLES

Show that the following graphs are Hamiltonian.

In other words, find a Hamiltonian cycle in each.

We saw that it is easy to tell if a graph is Eulerian or not. To prove a graph is Hamiltonian, just find a Hamiltonian cycle. But there is no easy method for showing a graph is not Hamiltonian.

You could check all paths of length 1/1. Takes too long!

Better to use some basic facts:

Let H be a Hamiltonian cycle in a pseudograph G ① Every vertex of G has exactly two edges of H passing through it. ② The only cycle contained in H is H.

Prove that the following graphs are not Hamiltonian.

PROPOSITION. The Retersen graph is not Hamiltonian.

Which of the following graphs are Hamiltonian?

Which Kn are Hamiltonian?

Which Kmin are Hamiltonian?

What about the Knight graph on a chessboard?

GRAY CODES

To fix this, want to number so that adjacent regions differ by one bit.

At first, not obvious how to do this. But: such a numbering is just a Hamiltonian cycle in the n-cube.

WEIGHTED GRAPHS

A weighted graph is a graph G(V, E) together with a function $\omega: E \rightarrow [0, \infty)$

For $e \in E$, the number w(e) is the weight of e.

WEIGHTED GRAPHS

Graph	Vertices	Edges	Weights
communication	Computers	fiberoptic cables	response time
air travel	airports	flights	flight times
cor travel	street corners	streets	distances
Kevin Bacon	actors	Common movies	(
Stock market	stocks	transactions (directed edges)	cost
operations research	projects	dependencies (directed edges)	times

DISTANCE PROBLEMS

TRAVELING SALESMAN PROBLEM. Given a list of cities to visit, what is the minimum distance you need to travel?

TSP is really a question about weighted graphs.

EASIER PROBLEM. Given two vertices in a weighted graph, what is their "distance."

EXAMPLE

PROBLEM. Find the distance between A and E.

How to find the shortest path in general?

To find the distances from a given vertex A in a weighted graph to all other vertices, do the following.

First, give A the permanent label O, and give all other vertices the temporary label ∞. Then repeat the following step: Find the vertex v with the newest permanent label. For each vertex v' adjacent to v with a temporary label, check if label of $v + w(vv') \leq label of v'$ If so, change the temporary label of V? Make the smallest temporary label permanent. Edsger Diikstra

Permanent labels are the distances from A.

Find the distance from A to each other vertex.

•

١

What if we further want to find a walk between two vertices with the shortest length (not just the distance between the two vertices)?

Idea: Every time we make a label permanent, draw a little arrow from that vertex to all other vertices that are "en route" to the home vertex A

> Then, follow the arrows to find all shortest walks home.

Find all shortest paths from A to E.

•

١

Find the shortest paths...

from LAX to JFK

from Nakamura to Tokushima

What is the complexity of Dijkstra's algorithm, if size is measured in the number of vertices and cost is measured in terms of number of operations (=additions and companisons)?

FLOYD-WARSHALL ALGORITHM

Note: Mk has same row/col k as Mk-1.

FLOYD-WARSHALL ALGORITHM

Find all distances using the Floyd-Warshall algorithm.

DIJKSTRA VS FLOYD-WARSHALL

To find distances for all pairs of vertices, we need to run Dijkstra's algorithm n times $\rightarrow O(n^3)$.

Floyd-Warshall is also $O(n^3)$, but is quicker for large graphs.

One advantage to Floyd-Warshall is that it even works with negative edge weights.

A tree is a connected graph with no circuits.

TREES

Which of the following graphs are trees?

List all trees with 5 or fewer vertices up to isomorphism.

APPLICATIONS OF TREES

Parents Visiting

Weather

Money

Rainy

Poor

Cinema

No

Windy

Shopping

and Many more...

CHARACTERIZING TREES

THEOREM. Let G be a graph with n vertices. The following are equivalent: (i) G is a tree (i.e. G is connected with no circuits) (ii) G is connected and has no cycles. (iii) G is connected and has n-1 edges. (iv) Between any two vertices of G there is a unique walk that does not repeat any edges. Also: (v) G has n-1 edges and no cycles (vi) G is connected, but removing any edge makes it disconnected. (vii) G has no cycles, but adding any edge creates one. etc...

APPLICATION TO CHEMISTRY

A hydrocarbon has the form CnH2n+2. Carbon has degree 4 and Hydrogen has degree 1.

PROBLEM. Find all hydrocarbons for n=1,2,3,4.

CHARACTERIZING TREES

THEOREM. Let G be a graph with n vertices. The following are equivalent: (i) G is a tree (i.e. G is connected with no circuits) (ii) G is connected and has no cycles. (iii) G is connected and has n-1 edges. (iv) Between any two vertices of G there is a unique walk that does not repeat any edges.

SPANNING TREES

A spanning tree for a graph G is a subgraph. that is a tree and that contains every vertex.

A minimal spanning tree for a weighted graph is a spanning tree of least weight.

Application: Given a network of roads, which roads should you pove so that (a) all towns are connected and (b) we use the least amount of asphalt?

SPANNING TREES

How to find a spanning tree?

One answer: Delete all edges until there are no cycles.

Example. How many spanning trees can you find?

Question. How to find all spanning trees? How many are there? Could hunt for cycles, delete edges. Inefficient!

DEPTH-FIRST SEARCH AND BREADTH-FIRST SEARCH

Breadth-first: Use as many edges from start point as possible. Then from the endpoints of all those edges use as many edges as possible, etc.

KIRCHHOFF'S THEOREM

THEOREM. Given a graph G, make the matrix M as above. Delete the ith row and the jth column to obtain a matrix M'. Then:

 $(-1)^{i+j} det(M') = \# spanning trees for G.$

Gustav Kirchhoff

KIRCHHOFF'S THEOREM

12.3 MINIMAL SPANNING TREE ALGORITHMS

KRUSHKAL'S ALGORITHM

GOAL: Find a minimal spanning tree for a given graph. Want something more efficient than enumerating all trees. The Algorithm. Set $T = \phi$. Consider all edges e so $T \cup \{e\}$ has no circuits. Choose the edge e of smallest weight with this property. Replace T with $T \cup \{e\}$. Repeat until T is a spanning tree.

Note: The number of steps is one less than the # of vertices.

Krushkal's algorithm is an example of a "greedy algorithm"

KRUSHKAL'S ALGORITHM

Find minimal spanning trees for the following weighted graphs.

KRUSHKAL'S ALGORITHM

Why does the algorithm work?

Let e1,..., en-1 be the edges chosen by Krushkal's algorithm, in order.

Prove the following statement by induction: {e1,..., ek} is contained in some minimal spanning tree.

Base case: K=O, i.e. & contained in some minimal spanning tree.

Suppose {e1,...,ek} contained in some minimal spanning tree T, but ek+1 is not in T. ~ T u ek+1 has a cycle. There is an edge f contained in this cycle that is not equal to e1,...,ek+1 (the ei form a tree, so they form no cycles). Now, f and ek+1 have same weight, otherwise weight of T-f+ek+1 is less than weight of T. We see T-f+ek+1 is the desired tree.

PRIM'S ALGORITHM

Idea: Grow a tree from a vertex.

The algorithm. Set T = V (any vertex) Choose an edge e of minimal weight so $T u \{e\}$ is a tree Replace T with $T u \{e\}$. Repeat until T is a spanning tree.

Note: We know Tu {e} is a tree if The is a single vertex.

PRIM'S ALGORITHM

Find minimal spanning trees for the following weighted graphs.

KRUSHKAL'S ALGORITHM VS. PRIM'S ALGORITHM What is the complexity? size = # edges cost = # comparisons

KRUSHKAL: $O(n\log n + n^2)$

 $P_{RIM}: \mathcal{O}(n^2)$

Check these! Idea: order the remaining edges. Then, need to check which can be added to the current tree by comparing the endpoints of each edge with the vertices of the current tree.

The advantage over Krushkal's algorithm is that there are fewer edges to check at each step. In fact, Prim is $O(n^2)$.

SPANNING TREES

A spanning tree for a graph G is a subgraph. that is a tree and that contains every vertex.

A minimal spanning tree for a weighted graph is a spanning tree of least weight.

Application: Given a network of roads, which roads should you pave so that (a) all towns are connected and (b) we use the least amount of asphalt?

SPANNING TREES

How to find a spanning tree?

One answer: Delete all edges until there are no cycles.

Example. How many spanning trees can you find?

Question. How to find all spanning trees? How many are there? Could hunt for cycles, delete edges. Inefficient!

DEPTH-FIRST SEARCH AND BREADTH-FIRST SEARCH

Breadth-first: Use as many edges from start point as possible. Then from the endpoints of all those edges use as many edges as possible, etc.

MAZES

One algorithm for solving a maze is to put your right hand on the wall and walk.

Is this a depth-first or breadth-first algorithm?

KIRCHHOFF'S THEOREM

THEOREM. Given a graph G, make the matrix M as above. Delete the ith row and the jth column to obtain a matrix M'. Then:

 $(-1)^{i+j} det(M') = \# spanning trees for G.$

Gustav Kirchhoff

KIRCHHOFF'S THEOREM

KRUSHKAL'S ALGORITHM

The Algorithm. Set
$$T = \phi$$
.
Consider all edges e so $T \cup \{e\}$ has no circuits.
Choose the edge e of smallest weight with this property.
Replace T with $T \cup \{e\}$.
Repeat until T is a spanning tree.
Note: The number of steps is one less than the # of vertices.

Krushkal's algorithm is an example of a "greedy algorithm"

KRUSHKAL'S ALGORITHM

Find minimal spanning trees for the following weighted graphs.

KRUSHKAL'S ALGORITHM

Why does the algorithm work?

Let e1,..., en-1 be the edges chosen by Krushkal's algorithm, in order. Prove the following statement by induction: {e1,..., ek} is contained in some minimal spanning tree.

PRIM'S ALGORITHM

Idea: Grow a tree from a vertex.

The algorithm. Set T = V (any vertex) Choose an edge e of minimal weight so $T u \{e\}$ is a tree Replace T with $T u \{e\}$. Repeat until T is a spanning tree.

Note: We know Tu {e} is a tree if The is a single vertex.

PRIM'S ALGORITHM

Find minimal spanning trees for the following weighted graphs.

KRUSHKAL'S ALGORITHM VS. PRIM'S ALGORITHM What is the complexity? Size = # edges Cost = # ComparisonsKRUSHKAL: $O(nlogn + n^2)$

 $P_{RIM}: \mathcal{O}(n^2)$

PLANAR GRAPHS

A graph is planar if it can be drawn in the plane so that no two edges cross.

The Three House - Three Utility Problem asks whether or not Kzz is planar.

PLATONIC SOLIDS

One collection of interesting planar graphs comes from the five Platonic solids:

Plato

PLANAR GRAPHS

Which of the following graphs are planar?

PLANAR GRAPHS

Is this graph planar?

VERTICES, EDGES, AND FACES

A planar drawing of a planar graph divides the plane into distinct regions, or taces.

What is the pattern?

EULER'S THEOREM

THEOREM. Any planar drawing of a graph with V vertices, E edges, and F faces satisfies V-E+F=2

In 1988, the Mathematical Intelligencer ran a survey. It was decided that the 5 most beautiful results in Mathematics were: (i) Euler's identity e^{ix} = cos x + i sin x (ii) Euler's polyhedral formula V-E+F = 2 (iii) Euclid's proof of the infinitude of the primes (iv) Euclid's proof that there are only 5 regular solids (v) Euler's summation Z 1/n² = 11/6

Does the Buckeyball satisfy V-E+F=2?

EULER'S THEOREM

THEOREM. Any planar drawing of a connected graph with V vertices, E edges, and F faces satisfies V-E+F=2

K3,3 IS NOT PLANAR

THEOREM. K3,3 is not planar.

K5 IS NOT PLANAR

THEOREM. If a planar graph has V vertices and E edges, then $E \leq 3V - 6$.

COROLLARY. K5 is not planar.

THEOREM. Every planar graph has at least one vertex whose degree is less than 6.

MORE NONPLANAR GRAPHS

So far, we know K5 and K33 are not planar. It follows that Kn is not planar for n75, Km,n is not planar for m,n73. More generally: PROPOSITION. Any graph that contains K5 or K3,3 as a Subgraph is not planar.

Note also any subdivision of K5 or K3 is nonplanar:

PROPOSITION. Any graph that contains a subdivision of Ks or K3,3 as a subgraph is not planar.

KURATOWSKI'S THEOREM

Amazingly, the converse is also true:

THEOREM. A graph is planar if and only if it contains no subgraph that is a subdivision of K5 or K3,3. PROOF. See web site.

Which of the following graphs are planar?

A Platonic solid is a 3-dimensional solid with polygonal faces, and satisfying: (i) The faces are regular and congrvent. (ii) The same number of faces meet at each vertex. (iii) The line connecting any two points on the solid is contained in the solid.

WAGNER'S THEOREM

A graph H is a minor of a graph G if H is obtained from G by taking a subgraph and collapsing some edges.

THEOREM. A graph is planar if and only if it does not contain K5 or K3,3 as a minor.

FARY'S THEOREM

THEOREM. Every planar graph can be drawn in the plane using only straight lines.

The proof uses the art gallery theorem ...

OTHER SURFACES

What are the largest m, n so Kn and Km, n can be drawn without crossings on a Möbius strip

Show that, given any map in the plane, you can color it with four colors so that adjacent regions have different colors.

Notes. (i) Each region must be a connected "blob". (ii) "Adjacent" means the regions meet in a segment (not just a corner). Why are these careats needed?

Francis Guthrie

Is there a map that really requires 4 colors?

How many colors are needed?

Hint: Look at Nevada.

How many colors are needed?

For more challenges: nikoli.com

First posed in 1852 by Guthrie. Many tried to solve it. Alfred Kempe (1879) and Pether Guthrie Tait (1880) both gave solutions that stood for 11 years.

Lewis Carroll wrote about it:

"A is to draw a fictitious map divided into counties.

B is to color it (or rather mark the counties with names of colours) using as few colours as possible. Two adjacent counties must have different colours.

A's object is to force B to use as many colours as possible. How many can he force B to use?"

The problem was solved in 1976 by Appel and Haken. It was the first major theorem proven in large part by computer. The proof has recently been simplified by Robin Thomas (GaTech) and his collaborators (still using computers).

BACK TO GRAPHS

Given a map, we get a graph G(V, E) where V = { regions } E = { pairs of adjacent regions }

If the map is planar, then the graph is planar.

Coloring the map corresponds to coloring the vertices of the graph so that adjacent vertices have different colors.

GRAPH COLORING

A coloring of a graph is an assignment of colors to each of the vertices so that adjacent vertices have different colors.

The chromatic number X(G) of a graph G is the smallest number of colors needed for a coloring of G.

FACT.
$$| \leq \chi(G) \leq |V|$$

FACT. If G is isomorphic to H, then $\chi(G) = \chi(G)$. FACT. $\chi(K_n) = n$, $\chi(K_{m,n}) = 2$, and $\chi(C_n) = \begin{cases} 2 & n even \\ 3 & n odd. \end{cases}$ FACT. If H is a subgraph of G then $\chi(H) \leq \chi(G)$ FACT. If G has a coloring with n colors, then $\chi(G) \leq n$.

THE FOUR COLOR THEOREM

THEOREM. If G is planar, then $\chi(G) \le 4$.

Kenneth Appel

Wolfgang Haken

Note: There is still no polynomial time algorithm for finding a coloring with 4 colors.

Applications

1. Sudoku. A vertex for each little square. An edge for two squares in same row, col, or 3×3 sqr. 2. RADIO FREQUENCIES. A vertex for each radio station. An edge between stations that are near eachother. 3. SCHEDULING. Example: Say there are 10 students taking @ Physics, Geology 1) Physics, Math, IE Physics, Econ, Geology (7) Business, Stat
Geology, Business (8) Math, Geology 5 Math, Business (1 9 Physics, Comp Sci, Stat 10 Physics, Econ, Comp Sci

What is the minimum number of final exam periods needed?

SIX COLORS SUFFICE

PROPOSITION. If G is a planar graph then $\chi(G) \leq 6$.

DEGREES AND COLORS

PROPOSITION. For any graph G: $\chi(G) \leq (\text{largest degree of a vertex of } G) + 1$

PROOF. Same as above.

COMPUTING X

To show that $\mathcal{X}(G) = n$, we generally have to show two things:

 $(1) \chi(G) \leq n$ Some possible reasons:

- · G has n vertices
- · G is bipartite
- G is planar
- · Largest vertex degree is n+1
- · We know an explicit coloring with n vertices.

2 X(G) ≈ n

Some possible reasons:

- G contains H and $\chi(H) = n$
- G contains H with X(H)=n-1 and a vertex adjacent to each vertex of H (cf. Nevada)

MORE COLORING PROBLEMS

SCHEDULING

There are 10 students in the following classes:

Physics: Annie, Bob, Florence, Ingrid, Joe Math: Annie, Elsa, Howard Engineening: Annie Geology: Bob, Cameron, Florence, Howard Economics: Bob, Dylan, Joe Business: Cameron, Elsa, Gordon Statistics: Dylan, Gordon, Ingrid Basket Weaving: Ingrid, Joe

What is the minimum number of final exam periods needed?

FIVE COLORS SUFFICE

THEOREM. If G is a planar graph, then $\chi(G) \le 5$.

PROOF. Induction on # vertices again. Say G is a planar graph with n vertices. Percy Head As before, delete a vertex v of degree ≤ 5. Color G-V with 5 colors. Can we reinsert v?

Percy Heawood

Case 1. There is no path from Vi to Vz using only red and green vertices. In this case, starting at Vi, swap red and green. Then color V red. Case 2. There is such a path. Similar.