Section K___

Mathematics 2602
Midterm 2
Prof. Margalit
28 February 2013

- 1. Choose the correct definition of "f is $\mathcal{O}(g)$."
 - A. $\forall c \forall n_0 (n \ge n_0 \to f(n) \ge cg(n))$
 - $B. \ \forall c \forall n_0 (n \ge n_0 \to f(n) \le cg(n))$
 - $C. \exists c \exists n_0 (n \ge n_0 \to f(n) \ge cg(n))$
 - $D. \exists c \exists n_0 (n \ge n_0 \to f(n) \le cg(n))$

Choose the correct statement of the principle of mathematical induction, or choose "None of the above." In each statement P(n) is a propositional function.

- A. If $P(k) \to P(k+1)$ for $k \ge n_0$, then P(n) is true for all $n \ge n_0$.
- B. If $P(n_0)$, P(k), and P(k+1) are true, then P(n) is true for all $n \ge n_0$.
- C. If $P(n_0)$ is true and $P(k) \to P(k+1)$ for $k \ge n_0$, then P(n) is true for $n \ge n_0$.
- D. None of the above.

2. Consider the sequence given by

$$a_0 = 0$$

 $a_1 = 1$
 $a_n = 2a_{n-1} + a_{n-2}, n \ge 2$

What is a_5 ?

Give a recursive definition of the sequence $a_n = (n!)^2$.

$$a_0 = 1$$
 $a_n = n^2 a_{n-1} \quad n = 1$

3. Give a big-O estimate for the number of additions and multiplications needed in order to multiply two $n \times n$ matrices. In pseudocode, the usual algorithm is:

 $\begin{array}{l} \mathbf{procedure} \ \mathit{matrix} \ \mathit{multiplication}((a_{i,j}), (b_{i,j}) : n \times n \ \ \mathit{real-valued} \ \mathit{matrices}) \\ \mathbf{for} \ \mathit{i} := 1 \ \mathit{to} \ \mathit{n} \\ c_{i,j} := 0 \\ \mathbf{for} \ \mathit{k} := 1 \ \mathit{to} \ \mathit{n} \\ c_{i,j} := c_{i,j} + a_{i,k} b_{k,j} \\ \mathbf{return} \ \ (c_{i,j}) \end{array}$

- $A. \quad \mathcal{O}(3n^2)$
- B. $\mathcal{O}(n^3)$
- C. $\mathcal{O}(\log n^3)$
- $D. \quad \mathcal{O}(3^n)$

R

What does it mean for a function f(n) to be $\mathcal{O}(1)$?

- A. f(n) is bounded
- B. f(n) = 1 for large enough n
- $C. \quad \lim_{n \to \infty} f(n) = 0$
- $D. \quad \lim_{n \to \infty} f(n) = 1$

4. Find the smallest integer n so that the following function is $\mathcal{O}(x^n)$.

$$\frac{x^4 + 5\log x}{x^4 + x^2 + x + 1}$$

Arrange the following functions in a list so that each function is big-O of the next.

$$(1.5)^n$$
, n^{100} , $(\log n)^3$, $\sqrt{n}\log n$, 10^n , $(n!)^2$, $n^{99} + n^{98}$

$$(\log n)^3 < \ln \log n < n^{99} + n^{98}$$

 $< n^{100} < 1.5^n < 10^n$
 $< (n!)^2$

5. Recall the bubble sort algorithm:

procedure bubble
$$sort(a_1, \ldots, a_n : real numbers with n \ge 2)$$
 for $i := 1$ to $n-1$ for $j := 1$ to $n-i$ if $a_j > a_{j+1}$ then interchange a_j and a_{j+1} return (a_1, \ldots, a_n)

Apply this algorithm to the sequence (12, 1, 17, 3, 11). Use a new column for each interchange. You do not need to use all of the columns.

12		1		1		
1	12	12	12	3	3	
17	17	3	3	12	1	
3	3	17	11	11	12	
11	11	11	17	וח	17	

What is the largest number of swaps needed to perform the bubble sort algorithm on a list of 5 numbers?

6. Show that 9x + 10 is $\mathcal{O}(x^2)$ by finding a specific c and n_0 as in the definition of "f is $\mathcal{O}(g)$."

$$C=19$$
, $n_0=1$
 $9n+10 \le 9n^2+10n^2=19n^2$ $n>1$.

oy

$$C=1, n_0=10$$

 $\times_{7,10} \rightarrow (x-10)(x+1) > 0$
 $\rightarrow x^2-9x-10 > 0$
 $\rightarrow x^2 > 9x+10$

Which of the following describes the relationship between 9x + 10 and x^2 ?

$$A. \quad 9x + 10 \prec x^2$$

$$B. \quad 9x + 10 \succ x^2$$

$$C. \quad 9x + 10 \approx x^2$$

D. None of the above.

7. Determine

$$\lim_{n\to\infty}\frac{3^n}{n^n}.$$

Justify your answer.

The limit is O because

$$\lim_{n\to\infty}\frac{3^n}{n^n}=\lim_{n\to\infty}\left(\frac{3}{n}\right)^n$$

$$\leq \lim_{n\to\infty} \left(\frac{3}{4}\right)^n = 0.$$

Which of the following describes the relationship between 3^n and n^n ?

$$A. \quad 3^n \prec n^n$$

$$B. \quad 3^n \succ n^n$$

C.
$$3^n \approx n^n$$

8. Use induction to prove that

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$$

for $n \geq 1$.

Base step:
$$|\cdot|! = (1+1)! - 1$$

 $1 = 2-1$
Assume $|\cdot|! + \cdots + k \cdot k! = (k+1)! - 1$
Then $|\cdot|! + \cdots + k \cdot k! + (k+1)(k+1)!$
 $= (k+1)! - 1 + (k+1)(k+1)!$
 $= (k+1)! (1+(k+1)) - 1$
 $= (k+2)(k+1)! - 1$
 $= (k+2)! - 1$

9. Consider the sequence defined by

$$a_0 = 1$$

 $a_1 = 3$
 $a_n = a_{n-1}^3 + a_{n-2} + 1, \quad n \ge 2.$

Use induction to show that a_n is odd for all $n \geq 0$. You may use basic facts about even and odd numbers.

Base cases:
$$a_0 = 1$$
 both odd. $a_1 = 3$

Then
$$a_n = a_{n-1}^3 + a_{n-2} + 1$$

$$= (odd)^3 + odd + 1$$

10. Consider the following recursively-defined set S.

$$\begin{pmatrix} 1\\0 \end{pmatrix} \in S$$

Recursive step: If $(m, n) \in S$ then

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \end{pmatrix} \in S$$
 and $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} m \\ n \end{pmatrix} \in S$

List the elements of S obtained in the first application of the recursive step.

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Use structural induction to show that if $(m, n) \in S$ then m is odd and n is even.

$$\binom{10}{21}\binom{m}{n} = \binom{10}{21}\binom{2a+1}{2b} = \binom{2a+1}{4a+2b+2} = \binom{odd}{even}$$