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Office Hour One

Mapping Class Groups

Tara Brendle and Leah Childers

An overarching theme in mathematics is that one can learn a vast deal about
an object by studying its group of symmetries. For example, in abstract alge-
bra we study two fundamental objects in mathematics—a finite set and a regular
polygon—via the symmetric group and the dihedral group, respectively.

The primary goal of this chapter is to introduce the mapping class group, that is,
the group of symmetries of another fundamental object: a surface. We will acquaint
the reader with a few of its basic properties and give a brief glimpse of some active
research related to this class of groups.

Our main goal is to find a nice generating set for the mapping class group. We
will introduce elements called Dehn twists, symmetries of surfaces obtained by
twisting an annulus. And we will sketch a proof of the following theorem of Max
Dehn:

The mapping class group of a compact surface is generated by Dehn
IWists.

In Section 1.1 we give an introduction to surfaces and explain the concept of a
homeomorphism, our working notion of isomorphism for surfaces. In Section 1.2
we give examples of homeomorphisms and in Section 1.3 the mapping class group
will be defined as a certain quotient of the group of homeomorphisms of a surface.
In Section 1.4, we discuss Dehn twists and some of the relations they satisfy. We
prove Dehn’s theorem in Section 1.5. Finally, in Section 1.6 we list some projects
and open problems.

The mapping class group is connected to many areas of mathematics, includ-
ing complex analysis, dynamics, algebraic geometry, algebraic topology, geomet-
ric topology (particularly in the study of 3- and 4-dimensional spaces), and group
theory. Within geometric group theory, the close relationships between mapping
class groups and groups such as braid groups, Artin groups, Coxeter groups, matrix
groups, and automorphism groups of free groups, have proved to be a fascinat-
ing and rich area of study. We refer you to Farb and Margalit’s excellent book A
Primer on Mapping Class Groups [4] for further details and references on many
topics mentioned in this chapter. Although their text is aimed at graduate students
and researchers, large portions of it are accessible to undergraduates.
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1.1 A BRIEF USER’S GUIDE TO SURFACES

The word “surface” comes from the French for “on the face.” Indeed, we all have an
intuitive notion of a surface as the outermost layer of an object, as when we speak of
resurfacing a road, or as the boundary between two substances, such as the surface
of the sea. Each of these kinds of surfaces is inherently two-dimensional in nature,
and mathematicians think of surfaces in similar terms.

A homeomorphism between surfaces (or any two topological spaces) is a contin-
uous function with continuous inverse; equivalently, it is an invertible function f
so that f and f~! preserve open sets. We should think of a homeomorphism as a
function that stretches and bends, but does not break or glue. For example, a circle
is homeomorphic to a square since you can bend one into the other. But a circle is
not homeomorphic to a line segment, since you would have to break the circle to
turn it into a segment.

Exercise 1 Convince yourself that the following subsets of R? are all homeomor-
phic: a circle, an ellipse, and a rectangle (or any polygon!). In other words, find
explicit homeomorphisms between these spaces.

The official definition of a surface is: a space so that every point has an open set
around it that is homeomorphic to an open set in the plane (technically, the space
has to be second countable and Hausdorff, but we’ll ignore this). In other words, a
surface is a (second countable, Hausdorff) space where every point has an open set
around it that looks planar (or a stretched, bent version of the plane). Let us give
some examples.

.

Figure 1.1 A list of surfaces.

The sphere and the torus. The leftmost surface in Figure 1.1 is familiar to us as
the sphere S%. We can think of S2 as the set of points in R? that are distance 1 from
the origin. The next surface is the forus T2, which may be familiar from calculus as
a surface of revolution. For example, you can obtain a torus by taking the circle of
radius 1 in the xy-plane centered at the point (2,0) € R2, and revolving it around
the y-axis in R3.

Higher genus. The torus 72 is often described as the frosting on a doughnut, with-
out the doughnut. The doughnut illustration is useful for obtaining another infinite
family of examples, by imagining (the frosting of) a doughnut with any number of
holes, as shown in Figure 1.1. The number of holes is the genus of the surface. The
genus can be thought of as the number of handles (or holes) on the surface.

The list of Figure 1.1 depicts surfaces increasing in genus. The sphere S? has
genus 0. The next surface, with genus 1, is the torus T2. The torus T2 is followed
by surfaces of genus 2 and higher.
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Figure 1.2 Three tori.

Three different tori? Consider the three subsets of R3 shown in Figure 1.2. The
surface on the left is much skinnier than the torus in the middle, yet we can still
recognize its basic donut shape. If we inflate the leftmost surface until it looks like
the surface in the middle, we obtain a homeomorphism from the first to the second;
the inverse map is obtained by deflating (notice that we can convince ourselves of
this without writing down an explicit map—if you can get comfortable with this,
you are becoming a topologist!). So these two surfaces, which look a little different,
are really homeomorphic. So to a topoologist, they are the same.

But what about the other surface in Figure 1.2? We claim that it is also home-
omorphic to the other two. For a moment, we imagine the first torus as a flexible
hollow tube. We cut the tube, tie it in a knot, and then reglue the tube so that every
point on one side of the cut is matched up exactly as before to the points on the
other side. Homeomorphisms must preserve open sets, and certainly any open sets
away from the cut were not disturbed by this process. But, by careful regluing, we
also have not changed any of the open sets, or neighborhoods, of points along the
circle where we cut. In fact, this process gives a homeomorphism from a standard
torus to the knotted torus. The main point is that the proverbial near-sighted bug
of Topology 101 cannot tell the difference between the two, because all neighbor-
hoods remain the same—perhaps stretched a bit, but still intact. We will return to
this point in the next section when we talk about homeomorphisms known as Dehn
twists.

The classification of surfaces. We can think of lots of other surfaces: paraboloids,
a sphere with a few points deleted, an icosahedron, a Mdbius strip, the unit disk,
etc. But amazingly there is a way to list them all! Let restrict to the special case of
compact, orientable surfaces.

A surface is compact if every infinite sequence has a convergent subsequence
subsequence (the surfaces shown in Figure 1.1 are compact, but the plane is not
compact and a sphere or torus with finitely many points deleted is not compact).

Next, orientable means that we can tell the difference between clockwise and
counterclockwise. A Mobius band is not orientable, because if you take a small
counterclockwise loop and push at around the Mobius band, it turns into a clock-
wise loop. Actually, a surface is non-orientable if and only if it contains a M&bius
band.

For example, a Klein bottle, shown in Figure 1.4 is a non-orientable surface.!
You should try to find a Mdbius strip in this surface.

'We're fans of the Acme Klein Bottle company; check them out at kleinbottle.com.
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Figure 1.3 A MGobius band.

Figure 1.4 A Klein bottle.

The classification of surfaces is the following amazing fact:

Every compact orientable surface without boundary is homeomorphic
to one of the surfaces shown in Figure 1.1.

In other words, two compact, orientable surfaces without boundary are homeomor-
phic if and only if they have the same genus g, i.e. there is one compact, orientable
surface without boundary for each g > 0.

From this, we can easily deduce a stronger version of the classification of sur-
faces:

Every compact orientable surface is homeomorphic to a surface ob-
tained from one of the surfaces shown in Figure 1.1 by deleting the
interiors of finitely many disjoint closed disks.

On a first pass through this Office Hour, the student might want to ignore the case
of surfaces with nonempty boundary as much as possible.

Exercise 2 Determine the genus of each of the two surfaces shown in Figure 1.5.

Exercise 3 Take a compact orientable surface S of genus one with one boundary
components. The boundary of S x [0, 1] is a compact surface without boundary.
Which one is it? What if we start with a surface of genus g with b boundary com-
ponents?

Euler characteristic. If we decompose a surface S into triangles (this means that
we obtain the surface from a disjoint union of triangles by gluing edges in pairs)
then the Euler characteristic x(5) is V — E+F where V, E, and F are the numbers
of vertices, edges, and faces (= triangles) in the triangulation. Notice that some
edges and vertices get identified in the gluing and so you need to keep track of all
of this. It is an amazing fact that x(.S) does not depend on the triangulation! The
Euler characteristic of a compact orientable surface of genus g with b boundary
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Figure 1.5 Two surfaces.

components is 2 —2¢g — b. It follows that a compact orientable surface is determined
up to homeomorphism by any two of the three numbers x, g, and b.

Exercise 4 Prove the last statement by finding triangulations of those surfaces (you
may assume that the Euler characteristic does not depend on the triangulation).

1.2 HOMEOMORPHISMS OF SURFACES

So far we have been living in the world of topology, but the notion of homeomor-
phism of a surface immediately leads us to groups and group theory. Let Homeo()S)
denote the set of homeomorphisms of S. The set Homeo(S) is closed under the op-
eration of function composition. Composition is associative and by definition every
homeomorphism has an inverse. We therefore see that Homeo(.S) is a group with
the identity homeomorphism as the identity element of the group.

When we first encountered homeomorphisms, we said that homeomorphic
surfaces should be thought of as the same surface. In the same vein, a self-
homeomorphism of a surface is precisely what we should think of as a symmetry
of the surface. Normally, when we think of symmetries, we think of rigid motions,
like in the dihedral group. But here in the world of topology, our symmetries are
allowed to stretch and bend, but never break or glue.

The mapping class group will be defined as a quotient of (a certain subgroup
of) Homeo(S). But before we say more about that, we introduce several impor-
tant examples of elements in the group Homeo(.S). Even though we just said that
homeomorphisms are usually not rigid symmetries, the first few examples of home-
omorphisms we give will in fact be rigid symmetries. These are the simplest ones
to visualize.

Rotation. If we arrange our surface of genus g as in Figure 1.6, we can rotate it by
27 /g, or by one “click,” to obtain an element of order g in the group Homeo(.5).

Exercise 5 Explain how the above example of a rotation of a surface of genus g
gives a homeomorphism of the surface of genus g as depicted in Figure 1.1

Hyperelliptic involution. Another example of a rotation is the hyperelliptic invo-
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Figure 1.6 Rotation by 27 /g about the center of the surface pictured is a homeomorphism.

lution given by skewering the surface about the axis indicated in Figure 1.7 and
rotating it by .

Figure 1.7 Rotation by 7 about the indicated axis is a hyperelliptic involution.

Reflections. Reflections of R? can also give rise to homeomorphisms of a surface.
As in Figure 1.8, we can just reflect across a plane that slices the surface in half.
This homeomorphism is fundamentally different from the others we have discussed
so far because the orientation of the surface has been reversed. If you think of
writing a word on the surface, then after the reflection the words will be reversed in
the same way that words look backwards in a mirror. More precisely, an orientation-
reversing homeomorphism is one that takes small counterclockwise loops to small
clockwise loops (we need to be on an orientable surface for this to even make
sense).

Dehn twists. We come now to some homeomorphisms of surfaces that cannot be
realized by rigid motions, namely, Dehn twists. Remember, one of our main goals
is to convince you that these generate the mapping class group.

First, a simple closed curve on a surface S is the image of a circle in the surface
under a continuous, injective function; three examples are shown in Figure 1.9. We
can picture a simple closed curve on a surface S as a loop on the surface that does
not intersect itself.

Any simple closed curve in a surface S gives rise to an important example of an
element of the group Homeo(S). Imagine cutting a surface along a simple closed
curve «, twisting one of the two resulting boundary components by a full 360-
degree twist to the right, and then carefully regluing, as shown in Figure 1.10.

This is really continuous! A map is continuous when it takes nearby points to
nearby points, and nearby points that are separated in the cutting are carefully re-
united again when regluing (look back at the knotted torus example we discussed
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OLIGMIULION
orientation

Figure 1.8 The surface is reflected across the vertical plane indicated. This homeomorphism
reverses the orientation.

Figure 1.9 Example of three simple closed curves on a surface.

at the end of Section 1.1, which also involved cutting and regluing). The inverse is
also continuous, since it is obtained by just twisting the other way. Thus we have a
homeomorphism, which is known as a Dehn twist about o, denoted T,,.

Notice that twisting to the right makes sense as long as we have an orientation on
the surface and this does not depend on any orientation of the curve we are twisting
around. If we approach the curve we are twisting around from either direction, the
surface gets stretched to the right. See Figure 1.11: the small horizontal arc in the
left-hand picture gets twisted to the right no matter which side you approach the
annulus from.

Dehn twists via annuli. We can make the definition of a Dehn twist more precise
as follows. Using polar coordinates (r, #) for points in the plane R?, we consider
the annulus A made up of those points with 1 < r < 2. Then we can define a map
Ty: A— Aby
(r,0) — (r,0 — 27tr)
The important thing to notice is that each point on the boundary of the annulus
A is fixed by the map T 4. This means that once we do our twisting on the annulus

A, we can obtain an element of Homeo(S) by extending by the identity, that is,
by fixing every other point on S outside of A. The point is that our twist on the
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Figure 1.10 A Dehn twist seen as cut along «, twist, and reglue. The simple closed curve v
intersecting o acquires an extra twist about a.

T,

=

©

Figure 1.11 A Dehn twist on an annulus.

annulus A and the identity map on S\ A agree where they meet, on the boundary of
the annulus A.

But this discussion was supposed to be about simple closed curves, not annuli.
The key realization is that every simple closed curve « in S is the core? of some
annulus A, as in Figure 1.14 (we are only considering orientable surfaces, that is,
surfaces that do not contain a Mobius band).

Exercise 6 Find a simple closed curve in the Klein bottle that is not the core of an
annulus.

So given a simple closed curve e we find a corresponding annulus A, and now
we’re in business: we can do the Dehn twist 74 which is an element of Homeo(.5).
In fact, the map T4 we have just defined is really just 7T, a Dehn twist about the
curve « as defined above. To see this, look again at Figure 1.10. We can understand

2In our previous discussion, the core of A in the plane R? is the set of points with 7 = %
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Figure 1.13 Three simple closed curves with their corresponding annuli.

this map by seeing what happens to a simple closed curve v that crosses «: away
from A, nothing happens to -, but as it nears «, the simple closed curve ~ suddenly
turns and traces « before continuing on its way.

1.3 MAPPING CLASS GROUPS

In our quest to define the appropriate notion of symmetries on a surface, we have
seen, through the example of Dehn twists, that the group Homeo(.S) is somehow
much too large. In order to address this, we would like to lump together homeomor-
phisms that are in some sense the same, and declare them to be the same. In other
words, we are going to introduce an equivalence relation, called homotopy, on the
set Homeo(S). The goal is to distill Homeo(.S) into a more manageable group that
still incorporates all the essential features of Homeo(.5).

Homotopy. We like to think of homotopy as the technical tool that allows us to
get away with not being very good artists when drawing simple closed curves on
surfaces—a bump here or a wiggle there does not matter; drawing objects to scale
is unimportant. Informally, we say two simple closed curves on a surface are ho-
motopic if one can be deformed to the other; see Figure 1.15 for examples and
non-examples. One way to think of this is to imagine that the simple closed curve
on the surface is made of a rubber band. If you stretch the rubber band and move it
around you will get a new curve homotopic to the original.

More precisely, a homotopy is a continuous deformation of one simple closed

Figure 1.14 The core of an annulus.
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Figure 1.15 The simple closed curve on the left is not homotopic to the other three curves,
which are all pairwise homotopic.

curve to another. Even more precisely, if we think of a simple closed curve in S as
the image of a continuous map S' — S, then two curves are homotopic if there is
a continuous map S! x [0,1] — S so that the image of S x {0} is the first curve
and the image of S* x {1} is the second curve. We use ¢ as the parameter for the
[0, 1] factor because we often think of an homotopy as a movie where at time ¢ = 0
we see the first curve and then we watch the curve slowly being deformed so that
by the time ¢ = 1 we have arrived at the second curve.

Next we discuss homotopy for homeomorphisms. Two elements f and g in
Homeo(S) are homotopic if one can be deformed to the other. More precisely,
f and g are homotopic if there is a continuous map F : S x [0,1] — S so that
F|S x {0} is f and F|S x {1} is g. Again, we can think of the homotopy F as a
movie going from one homeomorphism to the other.

As a basic example (one dimension down), think of a rotation of the circle S! as
an element of Homeo(S'), and convince yourself that it is homotopic to the iden-
tity. (Even better, convince yourself that every element of Homeo(.S') is homotopic
to either the identity or reflection about the x-axis.)

Exercise 7 Find elements of Homeo(7™?) that are homotopic to the identity. Find
some that are not!

Exercise 8 For any S, describe a nontrivial element of Homeo(S) that is homotopic
to the identity.

Exercise 9 Show that “is homotopic to” is an equivalence relation on the set
Homeo(.5).

A homotopy of surface homeomorphisms is a little harder to draw and visual-
ize than an homotopy of curves. However, it turns out that we can understand the
former in terms of curves.

It is not too hard to see that if two homeomorphisms f and h of S are homotopic,
then for all simple closed curves a, the curves f(a) and g(«) are homotopic. For a
closed, orientable surface S of genus at least three, the converse is true:

If f(«) is homotopic to h(«) for all simple closed curves « then f is
homotopic to h.

This is a useful tool for showing that two homeomorphisms are homotopic as it
reduces a problem about surfaces to a problem about curves. A priori, there are
infinitely many such curves to check, but it turns out you can get away with only
checking finitely many. Can you guess such a finite set of curves that determines a
homeomorphism of a closed orientable surface of genus three?
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If the genus is one or two, the above statement is almost true: if f(«) is homo-
topic to h(a) for all « then f is homotopic to either A or h times the hyperelliptic
involution. For other surfaces—for instance surfaces with boundary—some version
of the statement is true. Usually it is enough to consider curves and arcs instead of
just curves. We will discuss the details of this as necessary.

Mapping class groups. A mapping class of a surface S is basically a homotopy
class of homeomorphisms from the surface S to itself, and the mapping class group
is basically the group of mapping classes of a given surface.

Our actual definition of the mapping class group will be slightly different from
this. One reason for this is that our main theorem (that the mapping class group is
generated by Dehn twists) will not be true otherwise, and also our inductive proof
will not work otherwise.

Let S be a compact, orientable surface and let Homeo™ (S, 9.5) denote the group
of homeomorphisms of .S that preserve the orientation of .S and that restrict to the
identity map on each component of the boundary 0S.

Exercise 10 Show that if S is a surface with nonempty boundary, then every homeo-
morphism of .S that restricts to the identity on 0.S must also preserve the orientation
of S.

If h € Homeo™ (S, 08), we let [h] denote the set of all homeomorphisms from
S to S that are homotopic to h; here we insist that our homotopies to not move any
points on the boundary of .S. We say that [h] is the mapping class of the homeomor-
phism h. Alternatively we say that the homeomorphism A represents the mapping
class [h].

The set of all mapping classes of a surface S is denoted Mod(.S) and is called
the mapping class group of S. Since the elements of Mod(\S) are classes of home-
omorphisms, we will use composition of homeomorphisms to define a group oper-
ation on Mod(S). If f and h are elements of Homeo™ (S, 05) and if [f] and [A] in
Mod(S) are their respective mapping classes, then we can define an operation on
Mod(.S) as follows:

[f]-1gl = [f o g].

It is not too hard to show that this operation is well defined and associative, that the
mapping class of the identity function on S is the identity element of Mod(S), and
that [f]~! = [f~!] for any mapping class [f] € Mod(S). Thus Mod(SS) together
with this operation is truly a group.

Exercise 11 Show that the mapping class group Mod(SS) is the same as the quotient
of Homeo™ (S, 3S) by the subgroup consisting of all homeomorphisms homotopic
to the identity (again, homotopies must fix the boundary pointwise).

The notation Mod(S) is short for Teichmiiller modular group, an alternative
name sometimes used for this group.

Dehn twists as mapping classes. Returning to our example of Dehn twists, let us
consider a simple closed curve « in a surface S. Recall that in defining a Dehn
twist corresponding to «, we had to make choices: an annulus A with core «, and
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a parametrization of the annulus A, and the resulting homeomorphism depends
heavily on these choices. We seemed to have a serious problem: in the context of
homeomorphisms, it makes no sense to talk about “the”” Dehn twist about the simple
closed curve «. Rather, we obtained an uncountably infinite number of different
Dehn twists about «!

However, the homotopy class of the resulting homeomorphism is independent
of the choices, although it is a nontrivial exercise to prove this carefully. In other
words, while it does not make sense to talk about “the” Dehn twist 7}, in the context
of Homeo(.S), it does make sense in the context of Mod(SS).

Even better, it turns out that if o’ is another simple closed curve in the surface S
which is homotopic to «, then their corresponding Dehn twists are also homotopic!
So not only can we choose whatever annulus and whatever parametrization we like,
we are also free to choose any simple closed curve that is homotopic to «. Thus if
a is a homotopy class of simple closed curves, it makes sense to write T}, as a
well-defined element of Mod(S)

Notice that—as in the case of homeomorphisms—the inverse of a Dehn twist is
simply the Dehn twist about the same curve in the other direction.

We have finally arrived at the correct notion of the group of symmetries of a
surface S: it is the mapping class group Mod(S).

1.4 DEHN TWISTS IN THE MAPPING CLASS GROUP

Recall that Dehn’s theorem says that the mapping class group of a compact, ori-
entable surface is generated by Dehn twists. To get some appreciation for this the-
orem let’s consider the counterclockwise rotation of order 5 of the surface in Fig-
ure 1.16. By Dehn’s theorem there should be a product of Dehn twists achieving
this rotation. It is not at all obvious how to do this!

Figure 1.16 The homotopy classes a, b, and ¢

The rotation takes the homotopy class of curves a to the homotopy class c. As
a warmup, we might simply want to find at least some product of Dehn twists that
takes a to c.

First a few words about homotopy classes of curves versus curves. This is impor-
tant because the mapping class group does not act on the set of curves in a surface
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but it does act naturally on the set of homotopy classes of curves. For two homo-
topy classes of curves a and b, we define the geometric intersection number i(a, b)
to be the minimum of |a N 3] over all representatives « of @ and (3 of b.

In order to find a product of Dehn twists taking a to ¢ in Figure 1.16, we first
observe that there is a homotopy class of curves b with i(a, b) = i(b,c) = 1. This
is good, because we claim that:

If a and b are the homotopy classes of two simple closed curves that
intersect in one point then T,Ty(a) = b.

Using this claim, we can take a to c by first taking a to b and then taking b to c.

So let’s prove the claim. On the left-hand side of Figure 1.17 we have drawn two
curves that intersect in one point; we have denoted the homotopy classes by a and
b. If we multiply the desired equality 7,73 (a) = b by T);* on both sides we obtain
the equivalent equality Ty(a) = T, '(b). But this is straightforward to check; see
the right-hand side of Figure 1.17.

That proves the claim! Except for one thing: it might seem like cheating that we
have only checked what happens for just one pair of curves, while in fact there are
infinitely many pairs of curves in a surface that intersect exactly once, even up to
homotopy. The crucial point is that for every such pair of curves, there is a homeo-
morphism of the surface taking pair that to our pair. This homeomorphism (or rather
the inverse) takes our calculation to the required calculation for the other pair. In
other words, our calculation actually does all of the calculations! This is known as
the change of coordinates principle; it is similar to the principle of changing basis
in linear algebra.

Exercise 12 Prove that any two nonseparating simple close curves in a surface
differ by a homeomorphism of the surface (a simple closed curve is nonseparating
if it does not divide the surface into two pieces). Hint: What surfaces can you get
when you cut a given compact, orientable surface along a nonseparating curve?

Exercise 13 Prove the assertion that any two pairs of simple closed curves that
intersect once differ by a homeomorphism of the surface.

>
a n

Figure 1.17 The homotopy classes a, b, and T;; * (b) = Tp,(a).

The problem of finding a product of Dehn twists taking one simple closed curve
to another should remind you of the problem of solving a Rubik’s cube using the
finitely many possible twists of the Rubik’s cube. In fact, there is a really fun com-
puter game called Teruaki, written by Kazushi Ahara of Meiji University, which
realizes this idea (at the time of this writing, it is available for free from his website

(1D.
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The braid relation. We can rephrase the claim that 7,,7;(a) = b as a relation
between Dehn twists in the mapping class group, namely: if i(a,b) = 1 then we
have the relation

T, Ty T, = TyTuTh.

This relation is called the braid relation.
To prove that the braid relation holds we will need the following useful fact:

For any f € Mod(S) and any homotopy class a of simple closed
curves in S we have

Tiay = fTaf "

A bit of thought will convince you that this equation does not really require proof:
following a homeomorphism to another copy of S, doing the Dehn twist there, and
then going back again, is the same as if you just Dehn twist about the image of your
curve under the very same homeomorphism.

Using this fact, it is easy to prove the braid relation. Indeed, the relation

T, T, =T,T,Tp
is the same as
(T.T)T,(T.T,) "' =T,
and by our fact this is the same as

Tr.70a) = Th
Now there is another fact that 7., = T} if and only if the homotopy classes ¢ and
d are the same (this is believable, but not obvious!) and so that last equality is
equivalent to

TaTb (a) =b.

But our above claim says that this holds when i(a, b) = 1 so we are done!

The term “braid relation” comes from the theory of braid groups. Indeed this
relation is directly connected to an analogous relation in the braid group; see Office
Hour ?? for more explanation.

Groups generated by two Dehn twists. It turns out that we can completely char-
acterize the subgroup of Mod(S) generated by two Dehn twists T, and T}, in terms
of i(a, b). Here are the groups we get:

i(a,b) | (T, Ty)
0 <TaaTb ‘ T T, = TbTa>
1| (To, Ty | To Ty Ty = Ty ToT)
> 2 <Taa Tb ‘ >

The first group is isomorphic to Z?2, the second to the braid group Bs, and the
third to the free group F5. What is more, the last isomorphism can be proved using
the ping pong lemma and the action of (T, T},) on the set of homotopy classes of
simple closed curves in the surface. The two sets in the ping pong lemma are the
sets of homotopy classes of simple closed curves ¢ with i(a, ¢) > i(b, ¢) and vice
versa. See the book by Farb and Margalit [4, Chapter 3] for the proofs.
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1.5 GENERATING THE MAPPING CLASS GROUP BY DEHN TWISTS

Let’s dive right in now and and prove Dehn’s theorem:

For any compact, orientable surface S, the mapping class group
Mod(S) is generated by Dehn twists.

Even better, Stephen Humphries shoed that for a closed, orientable surface S genus
g, the group Mod(.S) is generated by Dehn twists about the 2¢g + 1 simple closed
curves in Figure 1.18 [5].

Figure 1.18 Dehn twists about these 2g+ 1 simple closed curves generate the mapping class
group.

As a warmup for Dehn’s theorem we will convince ourselves that it is true for the
compact, orientable surfaces of genus zero with 0, 1, 2, or 3 boundary components.
We will later use these examples as base cases for our inductive proof of Dehn’s
theorem.

The disk. The first particular surface we will discuss is the disk D?: the com-
pact, orientable surface of genus O with 1 boundary component. We claim that any
homeomorphism A of the disk that fixes the boundary pointwise is homotopic to the
identity. Here is the homotopy: at time ¢, “do” h on the sub-disk of radius 1 — ¢ and
act as the identity everywhere else (here we are taking D? to be the disk of radius
1 and ¢ to vary from O to 1). At time 1 we just take the identity map of D?. For
each ¢ in [0, 1] this gives a homeomorphism precisely because h fixes the boundary
of D? pointwise. Further, no matter what h is, this rule defines a homotopy from
h to the identity (this clever homotopy is called the Alexander trick). In particular,
Mod(D?) is trivial (so it is generated by Dehn twists!).

Exercise 14 Write down a precise formula in terms of h for the homotopy in the
last example and verify that i is continuous.

The sphere. It is intuitively clear that any two simple closed curves in the sphere
S? are homotopic—sketching and staring at a few pictures should convince you,
although writing down a careful proof is a nontrivial exercise. It follows from this
that any homeomorphism of S? can be modified by homotopy so that it fixes the
equator pointwise (this is again intuitively clear but nontrivial to prove; there is a
theorem in differential topology called the isotopy extension theorem that does the
trick if you assume all of the maps in question are smooth). Any homeomorphism
of S? that fixes the equator and preserves orientation must send the northern and
southern hemispheres to themselves. But each hemisphere is just a disk, and so
using the fact that Mod(D?) is trivial, we conclude that our homeomorphism of S?
is homotopic to the identity. It follows that Mod(.S?) is again just the trivial group.
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The annulus. Let A denote the annulus S* x [0, 1]. We will argue that
Mod(A) 2 Z

and further that Mod(A) is generated by the Dehn twist about the core curve of A.
The key claim is the following:

An arc connecting two given points on different boundary components
of A is completely determined up to homotopy by how many times it
winds around the circle direction of A.

(For this claim to work we need to require that a homotopy of an arc keeps the
endpoints fixed throughout the homotopy.) What exactly do we mean by the number
of times that an arc winds around the circle direction of A? One way to make this
precise is to choose some arc ¢ in A (fixed once and for all) that connects the
two boundary components. Given any other arc o connecting the two boundary
components we orient « so that it connects the boundary components of A in the
same order as ¢ and then we count all of the intersections of o with §; if o crosses
0 from left to right we count a +1 and if it crosses from right to left we counta —1.
The sum of these numbers is the desired winding number.

Let’s prove the claim. Say that « and 3 are two arcs that both wind & times (in
the same direction) around the circle direction of A. We would like to show that 3 is
homotopic to o by a homotopy that fixes the endpoints of 3. Actually, by applying
the kth power of a Dehn twist about the core curve of A (or rather the inverse),
we can assume without loss of generality that & = 0. Moreover, it doesn’t hurt to
assume that « is the arc § we used in the previous paragraph to define the winding

of an arc around A.

« «

Figure 1.19 Consecutive intersection points of 5 with « and the disk (shaded) we use to
push the arc of 3

The assumption that £ = 0 then means that 3 has just as many positive inter-
sections with « as negative intersections. Therefore, if we follow along (5 we will
find somewhere two consecutive intersections with opposite sign. The picture looks
like the one in Figure 1.19; specifically, this sub-arc of [3, together with the arc of
« connecting the endpoints of the sub-arc of 3 bounds a disk in A. There may be
other arcs of 3 intruding on this disk, but no matter: just push (or, homotope) the
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sub-arc of /3 through the disk. We have reduced the number of intersections of 3
with o, and continuing this process inductively we remove all intersections of «
with 3. The only points of intersection that remain at the end are the two points of
intersection at the endpoints of « and 3. But then oo U 3 form a simple closed curve
in A and hence bound a disk which can then be used to homotope 3 onto «.

Problem 1 We secretly used the Jordan—Schonflies theorem—that every simple
closed curve in the plane bounds a disk—twice in the proof of the claim. Find all
instances of this and explain why it is valid to apply this theorem to the annulus
instead of the plane.

Now, back to showing that Mod(A) is isomorphic to Z. Let « be an arc that
winds O times around the circle direction. We can define a homomorphism to
Mod(A) — Z whereby f € Mod(A) maps to the number of times (with sign)
that f(«) wraps around the circle direction of A. It is easy to show that this map
is a surjective homomorphism: the nth power of the Dehn twist about the core of
the annulus maps to n. Using the same logic we used for the sphere, we can argue
it is injective. Indeed, if a homeomorphism fixes o up to homotopy, then we can
modify the homeomorphism by homotopy so that it fixes o pointwise. Then there
is an induced homeomorphism of the disk obtained by cutting A along «. This
homeomorphism of the disk is homotopic to the identity since Mod(D?) is trivial.
This homotopy gives us a homotopy of the original homeomorphism of A to the
identity, as desired.

The pair of pants. A pair of pants P is a compact, orientable surface of genus 0
with 3 boundary components (in other words, a sphere with three disks removed).
We would like to show that

Mod(P) = 73

and moreover that Mod(P) is the free abelian group generated by the Dehn twists
about the three boundary components of P (really, this means we take curves par-
allel to the boundary). Since every compact, orientable surface is made by pasting
together some number of spheres, disks, annuli, and pairs of pants, this is the final
ingredient we will need for our proof of Dehn’s theorem.

We can take a similar tack to the one used for the annulus. Let f € Mod(P). We
take a simple arc « in P connecting two distinct boundary components. The key
point is that an arc connecting two specific boundary components is determined up
to homotopy by the number of times it winds around each boundary component.
Then we can use a similar argument to the one used for the last two cases: we can
modify f by Dehn twists about the two boundary components at the end points of
« so that f fixes a up to homotopy; then we can cut along « to obtain an annulus,
whose mapping class group we already understand.

Exercise 15 Prove that an arc in a pair of pants connecting a pair of particular points
on different boundary components is determined by the number of times it winds
around the boundary components at either end. You may do this by modifying the
argument for the analogous claim for the annulus.
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Proving Dehn’s theorem. We are now ready to prove that the mapping class group
of any compact, orientable surface is generated by Dehn twists. Our exposition
follows closely a set of notes written by Feng Luo. [?] The key is the following.

Main Lemma. If c and d are simple closed curves in a compact, orientable surface
S, then there is a product h of Dehn twists so that

i(e, h(d)) < 2.

Proof. We will show that if i(c, d) > 3 then there is a simple closed curve b so that
i(c, Tp(d)) < i(c,d).

The idea is to look at the pattern of intersections along c. We can draw c as
a vertical arc on the page (imagine that this is a small piece of ¢) and draw the
intersections of d with ¢, so that d looks like a collection of horizontal arcs. All of
these arcs are connected up somewhere outside the picture, but we do not need to
worry about exactly how they are connected.

& &

Figure 1.20 The two cases for the main lemma

We also orient ¢ and d arbitrarily. All we care about is whether signs of inter-
section agree or disagree, and this does not depend at all on how we orient the two
curves.

If the intersection number i(c, d) is at least 3, then along the vertical arc in our
picture we either have to see two consecutive intersections of the same sign or three
consecutive intersections with alternating signs. In either case we can find a simple
closed curve b with the desired property. The curve b is indicated in Figure 1.20.
We have only shown a small part of b in the picture—after it leaves the page, b just
follows along d.

a ‘ ‘

.S

[——

Figure 1.21 Checking the first case of the main lemma
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It is a straightforward computation to check that b has the desired property. We
show the computation for the first case in Figure 1.21. The first of the five pictures
in the figure just shows ¢, d, and b, as in Figure 1.20. The second picture shows
Ty(d) (again, this curve follows d outside the picture). We see a portion of this
curve (at the bottom right) that looks like it is backtracking, so we can simplify
the picture by pushing this portion to the right as in the third picture. In the fourth
picture we have pushed around d until we arrive at the top left of the picture. If
we keep pushing, we get the fifth picture, at which point we see that 7, (d) has (at
least) one fewer point of intersection with ¢ than d does, as desired. We leave the
computation for the second case as an exercise. This completes the proof of the
lemma.

Exercise 16 Check in the second case of the last proof that i(c, Ty(d)) < i(c, d).

Proof of Dehn’s theorem. We proceed by induction on the genus g of our (compact,
orientable) surface S. The base case is ¢ = 0, and to prove Dehn’s theorem in this
case we use induction on the number n of boundary components (induction inside
induction!).

If nis 0, 1, 2, or 3, then we have a sphere, a disk, an annulus, or a pair of pants,
and we already verified Dehn’s theorem in those cases. Now suppose n > 4 and let
f € Mod(S). Let ¢ be a curve that cuts off a pair of pants in S (necessarily on the
other side of ¢ we have a surface of genus 0 with n — 1 boundary components).

By the Main Lemma there is a product of Dehn twists & so that i(c, ho f(c)) < 2.
We claim that this implies that h o f(c) = ¢! The reason is simple. First of all since
c is a separating curve (as are all curves in a surface of genus 0), we may only
have even numbers of intersection. Next, we can check that if i(c, d) is equal to
0 or 2 and ¢ # d then ¢ and d surround different sets of boundary components,
contradicting the fact that f and h act as the identity on the boundary of S (to see
this, draw your favorite pictures of curves that intersect 0 or 2 times and then argue
that all pairs of curves with those intersection numbers look like this).

Exercise 17 Verify the last sentence.

So what we have now is that there is a product of Dehn twists & so that ho f(c) =
c. In other words, we can assume without loss of generality that f fixes c. And now
we would like to argue by induction that f is a product of Dehn twists.

When we say that f fixes ¢ we really mean that the homotopy class of homeo-
morphisms f fixes the homotopy class of curves c. It follows that we can choose a
representative homeomorphism of f that fixes pointwise a representative curve of
c (isotopy extension again). But then if we cut our surface along ¢ we get two sur-
faces (a pair of pants and a surface of genus 0 with n — 1 boundary components, as
above) and our representative of f induces a homeomorphism of each of these sur-
faces. By induction, the corresponding mapping classes are both equal to products
of Dehn twists. But then it follows that the original mapping class f is a product of
the same Dehn twists!
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Now let g > 1. We assume by induction that every surface of genus g — 1 (with
any number of boundary components) satisfies the theorem. Let ¢ be any nonsepa-
rating curve. The key point is that if we cut our surface along c then we get a surface
of genus g — 1 with two additional boundary components. (We can prove this using
three facts: (1) the Euler characteristic of a surface of genus g with n boundary
components is 2 — 2g — n, (2) when we cut we create two additional boundary
components, and (3) when we cut we do not change the Euler characteristic. If you
do not believe this argument, you can instead take c to be a specific nonseparating
curve and just check for that curve.)

Again, given any mapping class f, we can apply the Main Lemma to say that,
without loss of generality, we have that i(c, f(c)) is either 0, 1, or 2. In any of these
three cases we claim that we can find a curve b so that i(c, b) = i(b, f(c)) = 1. But
we showed in Section 1.4 that if i(c,b) = 1 then there is a product of Dehn twists
taking b to ¢ (in the case i(c, f(c)) = 1 such a b exists but we clearly don’t need
it). Therefore we can modify f by a product of Dehn twists so that f(c) is in fact
equal to c. As in the genus O case, this gives us a mapping class of the surface of
genus g — 1 obtained by cutting along c. By induction on genus that mapping class
is equal to a product of Dehn twists, and it follows that f is itself a product of Dehn
twists, as desired. That does it!

Exercise 18 Verify the claim that if a and ¢ are nonseparating curves with i(a, ¢)
equal to 0 or two then there is a curve b with i(a, b) = i(b, ¢) = 1. Hint: there are
three cases: i(a,c) = 0, i(a, c) = 2 with same signs of intersection, and i(a,c) = 2
with opposite signs of intersection. Draw your favorite configuration for each case
and then argue that the general case looks like your configuration.

The torus. We end with a discussion of the torus. While it follows from Dehn’s
theorem (which we just proved) that Mod(7?) is generated by Dehn twists, we
will see that this mapping class group carries the extra structure of a linear group.
Indeed, we can show that

Mod(T?) = SL(2, 7Z).

Recall from Moon Duchin’s Office Hour ?? that the fundamental group of T2 is
isomorphic to Z2. The idea of the isomorphism Mod(7?) =2 SL(2,Z) is that there
is a homomorphism from Mod(7"?) to the group of automorphisms of the funda-
mental group of the torus:

Mod(T?) — Aut(m (T?)).

Given an element of Mod(7?) we can choose a representative that fixes our base
point for 7 (T%), whence the action on 71 (72). It turns out that for the torus this
action is well defined, independent of the choice of representative homeomorphism
(what special property of 71 (72) are we using here?).

Since Aut(m(T?)) = GL(2,Z), the entire game now is to show that the map
Mod(T?) — Aut(m(T?)) is injective and that the image is exactly the subgroup
of index two corresponding to matrices in GL(2, Z) with positive determinant. The
first statement is proven using arguments similar to the ones already given (if a
homeomorphism induces the trivial action then it fixes a curve, which we then cut
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along...). The second statement is proven by showing that the image matrix has
positive determinant if and only if the homeomorphism preserves orientation.
Consider the two simple closed curves in the torus of Figure 1.22.

(&

Figure 1.22 Two simple closed curves on a torus.

The Dehn twist about each of these simple closed curves is nontrivial and in
fact has infinite order in Mod(7?). It turns out that these two Dehn twists generate
Mod(T"?). Indeed, it is classically known that SL(2, Z) is generated by the matrices

11 nd 1 0
01 )\ -1 1)
And these matrices exactly correspond to the two given Dehn twists.

Exercise 19 Complete the proof that the mapping class group of the torus is iso-
morphic to SL(2, Z).

1.6 PROJECTS AND OPEN QUESTIONS

As noted in the introduction, the study of Mod(S) is a vast area of current research
involving many branches of mathematics. We will end here with a collection of
projects and open problems.

Linearity. When encountering a new group, the first question we should ask is: is
this group familiar? Have we ever encountered an isomorphic copy of it in some
other totally different context? We just saw that the mapping class group of the
torus is an example of a linear group, that is, it is isomorphic to a multiplicative
group of matrices GL(n, C), or one of its subgroups, for some natural number 7.
This fact was known classically, but it was only relatively recently that Bigelow
and Budney [2] gave a proof that when S is a surface of genus 2, Mod(.S) is also
a linear group, although a much more complicated one than SL(2, Z)—their proof
requires 7 to be at least 64.

There is a great deal of mathematical literature dedicated to demonstrating that
mapping class groups share just about every conceivable property possessed by
finitely generated linear groups, but yet the following question is currently un-
solved.

Open Question 1. Is Mod(S) a linear group for a surface S of any genus?

Other generating sets. Recall that the mapping class group can be generated by
2g + 1 Dehn twists. A reasonable question is whether we can do any better: can
we generate Mod(.S) by a smaller set of elements? It turns out we can’t do better
with Dehn twists, but one can generate all of Mod(.S) with just two elements if we
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allow other types of elements; for instance the mapping class group is generated by
two elements of finite order [8].

A discussion of various notions of “small” generating sets can be found in the
introduction to [3]. As a sample, we can consider generating sets consisting of
involutions, or elements of order 2, such as the hyperelliptic involution shown in
Figure 1.7. Various mathematicians have given generating sets for Mod(S) con-
sisting of involutions; for instance, Kassabov [6] and Monden [7] have shown that
for certain surfaces S, just 4 involutions suffice to generate Mod(S). It is known
that Mod(S) cannot be generated by two involutions (otherwise Mod(.S) would be
a quotient of the infinite dihedral group, and hence would have a cyclic group of
finite index).

Open Question 2. Can Mod(S) be generated by three involutions?

Relations between higher order Dehn twists. We discussed several relations in-
volving Dehn twists of two simple closed curves. Similar questions can be asked
about the kth powers of Dehn twists. Nikolai Ivanov asked if there are “deep” rela-
tions between Dehn twists.

Open Question 3. Is there a nontrivial relation between kth powers of Dehn twists
when k is very large?

In the last open question, the relations TF T T, * = leik ®) (and all relations that
are consequences of these) are considered trivial. ‘

Homomorphisms onto the integers. For a closed, orientable surface of genus at
least 3, one can use the famous lantern relation in mapping class groups to prove
easily that these mapping class groups are perfect, that is, their abelianizations are
trivial [4, Chapter 5]. This implies that there are no homomorphisms from these
mapping class groups onto Z. However, this does not rule out the possibility that
some finite index subgroup of the mapping class may admit such a homomorphism.

Open Question 4. Does any finite index subgroups of the mapping class group of a
closed, orientable surface of genus at least three admit a surjective homomorphism
onto 7.7
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