Name Prof. M

Scores: 1 2 3 1 5 6

Mathematics 4432 Midterm 1 Prof. Margalit 30 January 2015

1. Define homeomorphism.

A homeomorphism between two spaces X & Y is a continuous function $f: X \longrightarrow Y$ with continuous inverse.

Define knot.

A knot is a simple polygonal curve in \mathbb{R}^3 .

Define knot invariant.

A knot invariant is a function from {knots}/~ to some set.

2. True or false

Every knot diagram can be changed into a diagram of the trivial knot by changing over-crossings to under-crossings.

T

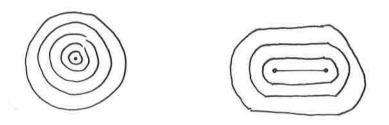
If A is homeomorphic to A' and B is homeomorphic to B' then $A \times B$ is homeomorphic to $A' \times B'$.

T

The set of irrational numbers in $\mathbb R$ has uncountably many path components.

T

Any two knots lying in \mathbb{R}^2 are equivalent.

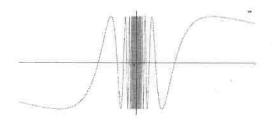

T

The open unit disk $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ is homeomorphic to \mathbb{R}^2 .

3. Consider the sets

$$A = \{(0,0)\}$$
 and $B = \{(x,0) \mid -1 \le x \le 1\}$

in \mathbb{R}^2 . Describe a homeomorphism between $\mathbb{R}^2 \setminus A$ and $\mathbb{R}^2 \setminus B$. Hint: Consider the set of points lying at distance r from A or B, for varying r.


map circles of distance r to "circles" of distance r preserving angles.

Are A and B ambient isotopic in \mathbb{R}^2 ? Why or why not?

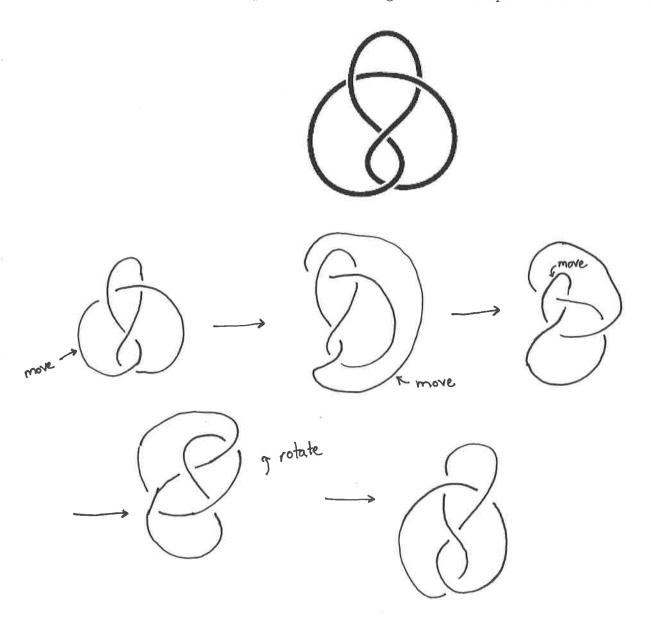
No. Ambient isotopic implies homeomorphic.

4. Consider the subset of \mathbb{R}^2 given by

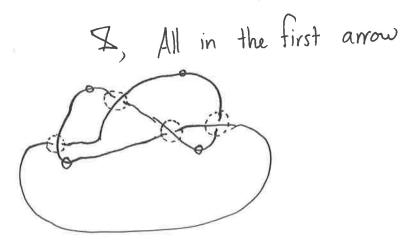
$$\{(x,\sin(1/x))\mid x\in(\infty,0)\}\cup\{(0,y)\mid -1\leq y\leq 1\}\cup\{(x,\sin(1/x))\mid x\in(0,\infty)\}.$$

Prove that this space is not homeomorphic to \mathbb{R} .

Let
$$p(t) = (x(t), y(t))$$
 be a path with $x(0) > 0$, $x(1) = 0$ and $x(t) > 0$ oxt<1.


$$\rightarrow \forall \bullet ([1-\delta,1]) \text{ contains } 1,$$

which does not lie in
$$(-1/2, 1/2) = (0 - \varepsilon, 0 + \varepsilon)$$


5. Prove that A and Q are not homeomorphic subsets of \mathbb{R}^2 .

Q has a point that separates it into 3 path components while A does not

6. Show by a sequence of pictures that the Figure 8 knot is equivalent to its mirror image.

How many Reidemeister moves did you use?

