Geometry, Topology, and Group Theory

Last time: We've learned so much!

Certain groups can/cannot act (geometrically) on the same graph/space.

Today: There's so much more to learn!
Hyperbolic Geometry

Euclid's Postulates (1-4) boring.
5) Given a point P not on line L,
exists line L' through P & not intersect L.

Lobachevsky/Poincaré: There is geometry without 5

→ Hyperbolic plane
Hyperbolic Plane \mathbb{H}^2

Defn 1

Compare Farey Graph.

Defn 2

Distances almost same as Eucl. dist.

The straight lines are pieces of circles/lines \perp to boundary. \Rightarrow metric is a multiple of one below.

Riemannian geometry

Metric:

$$\text{Euclidean metric}$$

$$1 - r^2$$

\Rightarrow straight lines as above.
all triangles congruent in \(\mathbb{H}^2 \)
all have interior angles 0
(all triangles “skinny”)

sum of interior angles < \(\pi \).

Compare spherical geometry
interior angles > \(\pi \).
Which groups act on $1H^2$?

For E^2 have reflection groups, e.g. W_{333} and Z^2 all of these coming from tilings.

Let's look for tilings of $1H^2$.
Looking for tiles in \mathbb{H}^2

small n-gons have nearly Euclidean interior angle sums $\pi(n-2)$

$1V \Rightarrow$ regular right angled pentagon!

Now tile!
Aside: Defn #3 of \mathbb{H}^2.

Isometries are:

\[\{ \text{Möbius transformation preserving open unit disk} \} \]

\[\longleftrightarrow \{ f(z) = \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{R} \} \]
Now have many newgps, not QT to Euclidean gps W333 etc.
Connection to Topology

\[\mathbb{H}^2 \]

\[\begin{array}{c}
\text{glue } b \\
\text{glue } a
\end{array} \]

\[\langle a, b : aba^{-1}b' = id \rangle \approx \mathbb{Z}^2 \]

\[\text{torus. QI to } \mathbb{H}^2 \]

\[\langle a, b, c, d : \text{right angled octagon} \rangle \]

\[\text{Surface of genus 2.} \]

\[\langle a, b, c, d : \text{fundamental gp of } S_2 \rangle \]

QI to \(H^2 \)
\[\mathbb{H}^2 \]

Milnor-Schnirelman:
fund. gp of \(S_2 \rightharpoonup_\mathbb{H}^2 \)

\[\mathbb{H}^2 \]
Hyperbolic Groups à la Gromov

A space is δ-hyperbolic if for any triangle, the δ-neighborhoods of two sides together contain the 3rd side.

Facts:
- H^2 is δ-hyperbolic ($\delta = \log 2$?)
- δ-hyp. is a QI invt \Rightarrow fundgp of S_2 is δ-hyp.
Two Theorems of Gromov

Thm. Most groups are hyperbolic.

Thm. A group is δ-hyp \Leftrightarrow its word problem is solvable in linear time.
Why does fund gp of S_2 have linear time soln to WP?

\[\langle a, b, c, d : \text{aba} = \text{b-c-d-c-d-d} \rangle \]

Any closed loop in Cayley graph must use ≥ 6 sides of a single octagon.

So can replace word of length 6 with word of length 2.

SHORTENING.
Bridgon

Here there be dragons.

Key: Ab — abelian, Nilp — nilpotent, PC — polycyclic, Solv — solvable, EA — elementary amenable, F = free, EF — elementarily free, L — limit, Hyp — hyperbolic, C_0 — CAT(0), SH — semi-hyperbolic, Aut — automatic, IP(2) — quadratic isoperimetric inequality, Comb — combable, Asynch — asynchronously combable, vNT — the von Neumann–Tits line. The question marks indicate regions for which it is unknown whether any groups are present.