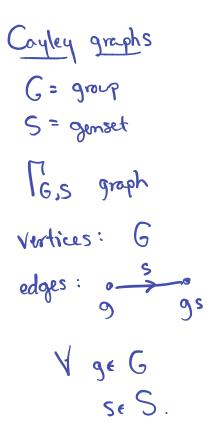
ANNOUNCEMENTS FEB 2

- · Cameras on
- · HW 2 due Thu 3:30
- · Groups/topics due Feb 5
- · OH Fri 2-3, appt
- . Way-too-early cause feedback Carwas Quizzes



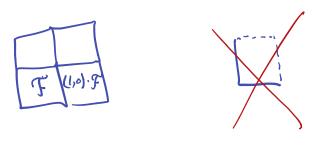
Last time: G CA PG,S $G \times V(\Gamma_{G,s}) \longrightarrow V(\Gamma_{G,s})$ g.h = gh. Capelt vertex This rule also tells you where hs edges go. h d gh gh gh s gh preserving arrows. Also: $G \longrightarrow Sym^+(\Gamma_{G,s})$

Induct on distance from e: Thm. The natural map ## we'll show \$ (g) & & agree $\mathbf{I}: \mathbf{G} \longrightarrow \mathrm{Sym}^{+}(\mathbf{\Gamma}_{\mathrm{G},\mathrm{S}}) \longrightarrow$ on all vertices of distance n defined above is an isomorphism. from e. Pf. Remains to show surjectivity. Base case: distance O Let $\mathcal{F} \in Sym^{+}(\Gamma_{G,s})$ Inductive step: Assume \$(g), ~ Need: = I(9) some ge G. _agree on vertices of distance n Which g? Take g = 2(e) from e. Say v has distance Atl Then: V=WS' x $\propto (v) \Theta_{(y_k)}$ $s \int g_{v}^{\prime \prime} g_{w_s}$ g_{w} So 2 & I(g) agree in distance w v n from e or: w /s the vertex e. $\alpha(w) = \overline{\mathfrak{P}(g)(w)}$

From Meier:

GCX = top space. $(example: T^2 G \mathbb{R}^2)$ A fundamental domain tor the action is a subset F=X () F closed 3 connected s.t. (2) $\bigcup g \cdot F = X$ and no proper subset of F satisfies 0 & 2. & 3 M

In the example can take F= unit square

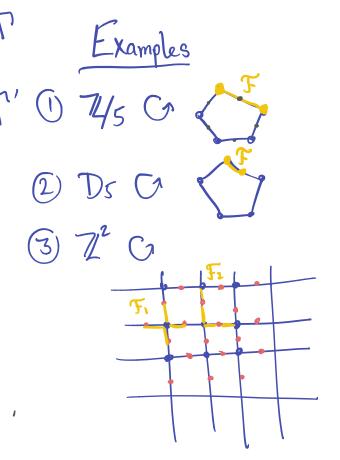


Issue #1. We don't know what closed subsets of a graph are.

Lots of fundamental domains:

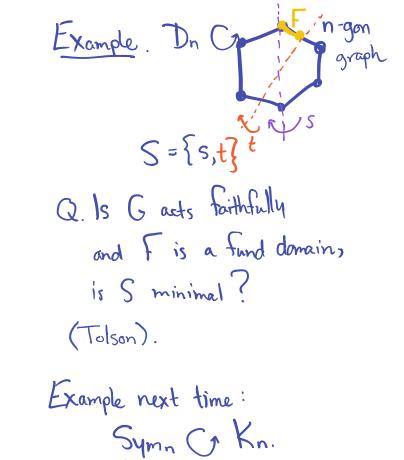
FI >>

For us: GCAT = graph. ["= (barycentric) subdivision of [(subdivide all edges of Γ). A fundamental domain for GCIT is a subgraph F= T' s.t. () F connected. (2) $\bigcup g \cdot \mathcal{F} = \Gamma'$ ge G & F minimal with respect



Then Say G Ca
$$\Gamma \in \text{connected}$$

& $F \subseteq \Gamma'$ subgraph
& Ug.F = $\Gamma(=\Gamma')$
geG
(e.g. F = fund. domain)
Let S = {geG : g.FnF # Ø}
Then S generates G.
The smaller F is, the smaller S is
That's why we care about fundamento
domains.



Then Say G CA
$$\Gamma$$
 connected
& $F \subseteq \Gamma'$ subgraph
& Ug.F = $\Gamma(=\Gamma')$
geG
(e.g. $F = fund. domain)$
Let $S = \{geG : g.FnF \neq \emptyset\}$
Then S generates G.
Proof. Let geG
Choose a vertex v in F.
Find a path p from v to g.
(Γ connected)

V

