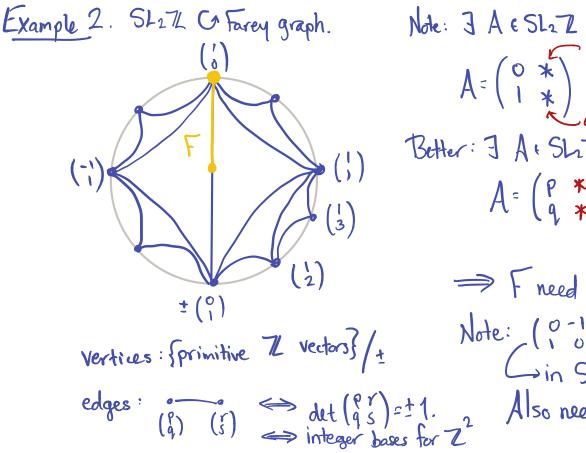
ANNOUNCEMENTS FEB 4

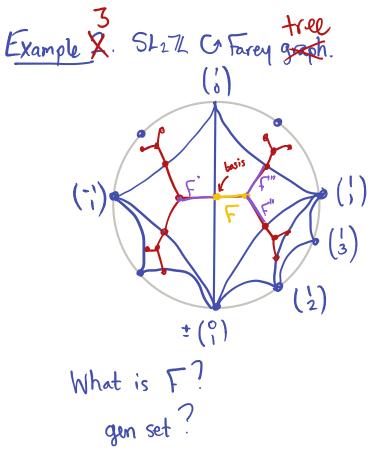
- · Cameras on
- · Grade/topic due Fri Gradescope
- · HW 3 due Feb 11 3:30
- · Abstracts due Feb 26
- · Office hours Fri 2-3, Tue 11-12, appt.



The GCT connected $F \subseteq \Gamma'$ subgraph. $Ug \cdot F = \Gamma'$ ge G Then $S = \{g \in G : g \in F \cap F \neq \emptyset \}$ generates G. example: 7/ C1-0123 $F = \frac{1}{5} + \frac{1}{5} +$ PF. Let ge G. Pick V= vertex of F. Choose a path from V to g.V (I connected)

 $F = g_0 \cdot F$ $p = g_2 \cdot F = gF$ V 9.F 9.14 Choose $g_0 \cdot F, \ldots, g_n \cdot F$ s.t. $g_0 = e, g_n = g, p \in \bigcup_{i=1}^{n} g_i \cdot F$ gi.Fngin.Ftø. Show by induction: gi is a prod. of elts of S^{±1} i=0 Assume true for i. WTS for it1. gitt Fn gi F #ø ⇒ gi·gi+1·F∩F≠Ø \Rightarrow $g_i \cdot g_{i+1} = s \in S \Rightarrow g_{i+1} = g_i s$

Example 1. Son G Kn


$$F = half \cdot edge$$

from n to n-1. z 3
S contains: Stab(n) = Sn-1
(n-1 n) · any etter $Sn-2$
Gan simplify: Sn-1 \leftarrow by induction: gen by
 $(n-1 n)$ $adjacent transpositions.$

Note: $\exists A \in SL_2 \mathbb{Z}$ s.t. $A \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} : \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $A = \begin{pmatrix} 0 & * \\ 1 & * \end{pmatrix}$ $Better : \exists A : SL_{2}Z \quad s.t. \quad A \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $A = \begin{pmatrix} p \\ q \end{pmatrix} Bezout$ p + p = 1=> Fneed only 1 redex of).... Note: (0-1) flips vertical edge. (Jin S! Also need: Stab (0).

What about Stab (')? X $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ only need: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and: (1-t) - T(because first col is really $\binom{\pm 1}{0}$)

Finally: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & l \\ 0 & l \end{pmatrix}$ $\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$ genurates SL2Z.

(0 1 (-10) takes F to F' $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ takes F to F"& F" [fixes F (and the whole) tree These gens have order: 4, 6,

A more far out example.

-