ANNOUNCEMENTS FEB 9

- · Cameras on
- · Abstract Feb 26 (consult w/me)
- · HW 3 due Thu 3:30
- · OH Fri 2-3, appt

Today: Fundamental domains \mathcal{D}_{∞}

Pf. First assume GCT' has finitely many orbits of edges. € Color each edge according to orbit. Example: Dr Cr 10-gon has 1 orbit of edges 2/5 Gx 10-gon has 2 orbits. of edges Build F inductively. Choose any edge. Call it f. Find a new color edge (not in F) adjacent to F, and add it to F. This stops by 🛞

Need to show $\bigcup g \cdot F = \Gamma'$ $g \cdot G$

Suppose not. There is an edge e not in U.g.F. and adjacent to it. Say e adjacent to gt Then <u>g'e</u> is adjacent to f.

This is a contradiction. We should have added gie already We proved : F is a unim of edges from different orbits. So: any two translates of F can only meet at vertices. So: the {g.F} "tile" [?

Thim. Say G Car = conn. graph Examples $H \leq G$ $F_G \subseteq \Gamma'$ fund. dom for G F_H $\subseteq \Gamma'$ fund dom for H 745 5 D5 If FH = gifg U... U gn Fg then [G:H]=n. $n \mathbb{Z} \leq \mathbb{Z}$ n=2 +27L

Thm. Say G Car = conn. graph H ≤ G $F_G \subseteq \Gamma'$ fund. dom for G FHST' fund dom for H If FH = gifg U... U gn FG then [G:H] = n. $\frac{Pf}{\{g_i, F_G\}_{i=1}^n} \longrightarrow \{G/H\}$ $g_i \colon F_G \longmapsto g_i H$

Want: bijection

A preture: FG 9: FG 9: FG FH Injectivity Suppose gill = gjlt ⇒ gigj eH ⇒ gig; does not identify two pts in intener of FH \implies gi F_{c} = gj F_{c} otherwise gi'gi takes gi'E to gi F. (FINISH)

 $f^2 = id.$ $t_i = (i i + i) = a^i t a^i$ $t_i t_i + t_i = t_i + i t_i + i$ a'ta' a''ta' a'ta' = a'' ta' a'ta' a'ta' a'' ta