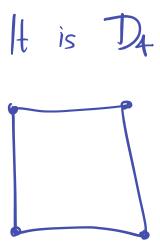
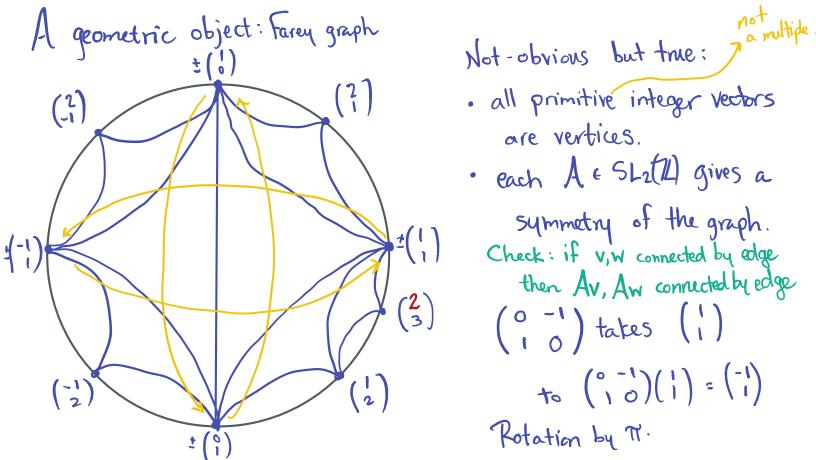
MATH 4803-MAR Intro. Geometric Group Theory Spring 2021 GATECH Basic Info Assessments Piazza 10% Participation. (Piatta) 30% HW 30%. Midtern Gradescope
Web page 30%. Final project Calendar Notes Resources/Refs Syllabus, Final Project


What is GGT?

Groups are collections of symmetries of geometric objects

Use the geometry to learn about the algebraic properties of the group.

A group:


	e	r	r^2	r^3	f	rf	r^2f	r^3f
e	e	r	r^2	r^3	f	rf	r^2f	r^3f
r	r	r^2	r^3	e	rf	r^2f	r^3f	f
<i>r</i> ²	r^2	r^3	e	r	r^2f	r^3f	f	rf
r^3	r^3	e	r	r^2	r^3f	f	rf	r^2f
	f							
rf	rf	f	r^3f	r^2f	r	e	r^3	r^2
	r^2f			_				
	r^3f							

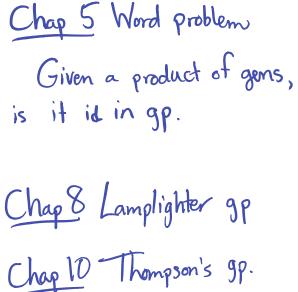
SL2(Z) = { 2×2 integer } matrices of } det = 1 examples: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Lin alg: eigenvals, eigenvectors, ...
lin transf. of \mathbb{R}^2

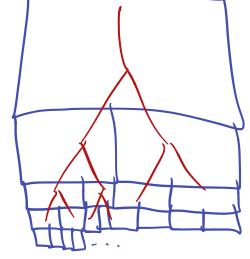
A group:

Group theory: generators? relations? torsion! Subgroups? quotients?

To do the check, prove: $\binom{p}{q}$ & $\binom{s}{s}$ are connected by an edge \iff det $\binom{p}{q}$ s $\binom{s}{s}$ = $\frac{t}{s}$ 1.

Check: If v,w connected by edge


then Av, Aw connected by edge


$$A \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix} = \begin{pmatrix} A(\rho) & A(\varsigma) \\ A(\varsigma) \end{pmatrix}$$

$$A \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix} = \begin{pmatrix} \gamma & \varsigma \\ q & \varsigma \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix}$$
then det $A(\rho & \varsigma) = \frac{1}{2} \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \rho & \varsigma \\ q & \varsigma \end{pmatrix}$

Overview of Course Chap 1. Cayley graph G - graph 2 ends I with gen set {3,2} Chap 2 Coxeter gps Chap 3 Groups acting on trees = groups gen by Free gps reflections Fn = gp with n gens & no relations example · Groups acting (freely) on trees free gps • $F_3 \leq F_2$ • $F_{\infty} \leq F_2$

Chap 4 Baumslag-Solitar gps see pic on web site.

Chap 11 Large Seale properties

hyperbolic plane. "treelike" Thm. Every 9p has

0, 1, 2, or 00 many
ends.

