Announcements Mar 23

- Cameras on
- HW due Thu 3:30
- Office Hours Fri 2-3, appt
 + makeup 10-11 Wed
- Progress report Apr 2 ~ 1 page
- First draft Apr 9
- Talk to me about makeup points!

Today
- Howson's thm
- Regular languages
- Automata
Howson's TNN

Thm 7.32 (1954)
If G, H f.g. subgps of F_n then $G \cap H$ is f.g.

A "counterexample" with F_n replaced by another group:

Take $F_2 \times \mathbb{Z}$, $F_2 = \langle x, y \rangle$, $\mathbb{Z} = \langle z \rangle$

$G = F_2$ (first factor)
$H = \ker (F_2 \times \mathbb{Z} \to \mathbb{Z})$

all 3 gens $\to 1$

To check:
1. $G \not\text{fg.}$ ✓
2. $H \text{fg.}$
3. $G \cap H$ not f.g.

2. Claim: H is gen by $\{xz^{-1}, yz^{-1}, z\}$

Step 1. $\langle S \rangle$ normal.
 To show: $gsg^{-1} \in \langle S \rangle$
 $g = (\text{gen for } F_2 \times \mathbb{Z})^t$ $s \in S$.

example: $y(x^{-1}z)y^{-1} = (yz^{-1})(x^{-1}z)(y^{-1}z)$

Step 2. $\langle S \rangle \subseteq H$ ✓
Step 3. $(F_2 \times \mathbb{Z})/\langle S \rangle \cong \mathbb{Z}$

We get $F_2 \times \mathbb{Z}$ subject to $x = z, y = z$ ✓
\[F_2 \times \mathbb{Z} \quad F_2 = \langle x, y \rangle \quad \mathbb{Z} = \langle z \rangle \]

G = F_2 (first factor)

H = ker (F_2 \times \mathbb{Z} \to \mathbb{Z})

all 3 gens \(\to 1 \)

Remains.

3) G\(\cap H \) not F_{G_{\mathbb{Z}}}

G\(\cap H \) is the subgp of F_2:

\[\text{ker } F_2 \to \mathbb{Z} \]

\[x, y \mapsto 1 \]

(exponent sum 0).

Claim. G\(\cap H \) is freely gen by

\[x^i y^{-i} \]

Example. \(x^5 y^{-5} x^3 y^{-3} y^2 x^{-2} \)

Very similar to HW problem:

\[\text{ker } F_2 \to \mathbb{Z}^2 \]

\[x \mapsto (1, 0) \]

\[y \mapsto (0, 1) \]

Freely gen by

\[\{ x^i y^j x^{-i} y^{-j} \} \]
Hanna Neumann Conjecture (1957)

\[\text{rk} (G \cap H) - 1 \leq (\text{rk}(G) - 1)(\text{rk}(H) - 1) \]

for \(G, H \leq F_n \)

Proved in 2011 by Friedman, Mineyev.

Our proof of Howson's thm

- uses regular languages, automata.

Today: automaton version of Howson's thm. Thu: Howson's thm.
Languages

\(S = \{x_1, \ldots, x_n\} \) “alphabet”

\(S^* = \{\text{words of finite length in } S\} \)

Any subset \(L \subseteq S^* \) is called a language.

Examples

1. \(S = \{a, \ldots, z\} \quad L = \{\text{words in } \text{OED}\} \)
2. \(S = \{a^3\} \quad L = \{a^n : 3 \mid n\} \)
3. \(S = \{a, b, c\} \quad L = \{a^i b^j c^k : i > 0, j > 0, k > 0\} \)
4. \(S = \{\text{gen set for } G\}^{\geq 1} \quad L = \{\text{words in } S \text{ that equal } \text{id} \text{ in } G\}. \)
Automata (= simple computer)
$S =$ alphabet (finite set)
An automaton M over S consists of a directed graph with decorations:
* some subset of vertices called start states S
* some subset A of vertices called accept states A
* edges labeled by elts of S.
If the graph is finite, M is a finite state automaton.

The language accepted by M is
\[\{ w \in S^* : w \text{ given by a directed path in } M \} \]

Examples
\[\begin{array}{c}
\begin{array}{c}
(5) \\
(0)
\end{array}
\end{array} \]
\[\begin{array}{c}
(5) \xrightarrow{a} (0) \xrightarrow{a} (0)
\end{array} \]

$\sim L = \{ a^i : 3 | i \}$
Poll: Is there a simpler automaton for the same language?

Deterministic! Yes!

\(h = \{ \text{words with } b\text{-exponent even} \} \)

\[a^3b^5ab \checkmark \]
Deterministic automata

A det. aut. is a FSA with
- exactly one start state
- no two edges leaving same vertex have same label
- no edges with empty label
 (in Meier: empty = ε)

It is complete if each vertex has departing edges with all possible labels.

What's deterministic about it?

words \leftrightarrow paths

The word ω corresponds to more than 1 path.

To see if a word is in the accepted language, start at the start state, trace out the word/path, see if land at accept state.

A language is regular if accepted by a det. FSA.
Automaton version of Howson's Thm

Lemma 1. \(L \) accepted by a det. FSA
(i.e. \(L \) is regular) \(\Rightarrow \) \(L \) accepted by a complete det FSA.

Pf. (exercise: add dead ends/fail states)

Lemma 2. \(L \) accepted by a non-det. FSA \(\Rightarrow \) \(L \) accepted by a det. FSA.

In other words: starting with a non-det FSA, Lemma 2 converts it to a det FSA, Lemma 1 converts to a complete det FSA.

Thm 7.11 Say \(K, L \subseteq S^* \) are reg. languages. Then so are:

1. \(S^* \setminus K \)
2. \(K \cup L \)
3. \(K \cap L \)
4. \(KL = \{ w_k w_l : w_k \in K, w_l \in L \} \)
5. \(L^* = LLULULLLU \ldots \)

reg. lang. is automaton version of f.g.
Lemma 2. \(L \) accepted by a non-det. FSA \(\Rightarrow \) \(L \) accepted by a det. FSA.

1. Two steps:
 1. Get rid of arrows with empty labels.
 2. Get rid of \(\emptyset \) vertices.

Example. \(L = \{ a^i b^j : i, j > 0 \} \)

\(a \xrightarrow{c} \emptyset \xrightarrow{a} \emptyset \xrightarrow{b} \emptyset \)

New vertices: subsets of old vertices.
New Start vertex: set of all old start vertices.
New Accept vertices: all sets containing an accept.

\[\emptyset \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{b} 2 \xrightarrow{a} 0 \]

\(a \xrightarrow{c} \emptyset \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{a} 0 \]

\(\emptyset \xrightarrow{a} 0 \xrightarrow{a} 0 \]
yw is in vertex restriction to V of $Tr G S$. Sym $T g$ gives μ. Nice G if you look all $g G Sym$ 54mA. Now and all gtv get a finite subset of $Sym C T$. Those are the finite States IN. lt 4i j

i

i

i

i

ixo.oi

VW 0100100010000

gg lvsgilg.cn 924
We can now convert \(M_\varepsilon \) into a deterministic automaton, \(D \). The states of \(D \) consist of all the subsets of \(V(M_\varepsilon) \). The single start state of \(D \) is the subset of \(V(M_\varepsilon) \) consisting of all the start states of \(M_\varepsilon \). The accept states of \(D \) are the subsets of \(V(M_\varepsilon) \) that contain at least one accept state of \(M_\varepsilon \). In \(D \) there is an edge from \(U \) to \(U' \) labelled by \(x \) if, for each \(v \in U \), there is an edge labelled \(x \) from \(v \) to some \(v' \in U' \), and \(U' \) is entirely composed of such vertices. That is, there is an edge labelled \(x \) from \(U \) to the vertex corresponding to the set

\[
U' = \{ v' \in V(M_\varepsilon) \mid v' \text{ is at the end of an edge labelled } x \text{ that begins at some } v \in U \}.
\]