ANNOUNCEMENTS MAR 25

- · Cameras on
- · HW due Thu 3:30
- · Office Hours Fri 2-3, Tue 11-12
- · Progress report Apr 2 ~ 1 page
- · First draft Apr 9
- . Talk to me about makeup points!

<u>Today</u> · Howson's thm · Regular languages · Automata

Howson's THM

- Thm 7.32 (1954) If G,H f.g. subgps of Foo then Grilt is f.g.
- Original proof: algebraic topology

Languages $S = \{x_1, ..., x_n\}$ "alphabet" $S^* = \{words \text{ of finite length in S}\}$ Any subset $L \subseteq S^*$ is called a language

examples $\square \ h = \{a^i b^j : i, j > 0\} \subseteq \{a, b\}^*$ (2) Consider $|H = \langle a^2, b \rangle \leq F_2$ L= reduced words in a, b, a', b' corresponding to elts of H. \subseteq $\{a,b,a',b'\}^*$

Language
examples
()
$$h = \{a^i b^j : i, j \neq 0\} \subseteq \{a, b\}^*$$

(2) Roughly states conespond to last letter
used.
(2) Roughly states conespond to last letter
used.
(2) Roughly states conespond to last letter
used.
(3) $h = \{a^2, b\} \leq F_2$
 $h = reduced words in a, b, a^i, b^i$
 $corresponding to elts of H.
 $\subseteq \{a, b, a^i, b^i\}^*$
Automaton examples
(1) $f \subseteq a$
 $a \in D$
 $a \in D$$

Deterministic FSA

FSA with

- . one start state
- . no edges w/empty label
- ≤ 1 edge with a given
 lefter starting from each
 vertex

→ regular languages Complete: =1 in 3rd bullet.

Tidying up a FSA
last Lemma 1. L accepted by det FSA
time
$$\rightarrow$$
 L accepted by complete det FSA
 \rightarrow L accepted by complete det FSA

In other words: FSAs, det FSAs, compl. det FSAs all give same languages, i.e. regular lang's.

Lemma 2. Lace by non-det FSA Let D be FSA with ⇒ Lace by det FSA. Vertices $V(D) = \mathcal{P}(V(M)) \setminus \phi$ Pf. Given FSA M, want to Edges Let U= {vi,..., vi} (D) make it satisfy the 3 bullet pts zre billet Vie V(M) without changing the accepted long. For each a ES (= alphabet) We'll just do 3ª bullet: Make an a-edge from \hat{U} to $V = \hat{U} \{v \in V(M) : \exists a edge \}$ • ≤ 1 edge with a given letter starting from each vertex Start state Estart states in M? Accept states elts of P(V(M)) cont. acceptst.

Key part of defn of D: Make an a-edge from U to $V = \bigcup_{i=1}^{k} \{ v \in V(M) : \exists a \text{-edge} \}$ from Vito V ° (S)

Automaton version of Howson's Thm Thm 7.11 Say K, L S* are reg. languages. Then so are: $OS^* \setminus K$ © KUL ** 3 KnL (4) $KL = \{ w_k w_k : w_k \in K, w_k \in L \}$ (S) L* = LULLULLU ···· ** reg. lang. is automaton version of f.g.

Pf. (1) Toggle accept/non-accept states example. L= {a': i'even} () ~ () ~ () ~ () (2) Say Mr, Mr FSA For K, L then MKUML is a FSA for KUL. Apply the 2 lemmas ③ KOL = S* \((S\K)U(S\L)) Apply (& 2

Freely reducing a language Lemma 3. L = reg. lang over St R = lang obtained from h by freely reducing. Then R is regular. Pf. Say L given by FSA M. If we see $o \xrightarrow{s} o \xrightarrow{s''} o$ add empty edge $\sim M'$

M' accepts all the words M did plus their freely reduced versions. Let K = language of all freely reduced words in Stl K is regular (exercise) & R = Knh(M')By Thim, R regular

Pf of Howson's thm H, K fin gen. subgps of Fn H, K are images of reg lang's LH, LK by Thm. By Lemma 3 we may assume LH, LK consist of freely red. words, which are exactly elts of H, K (need a free gp for this!)

Other Thm => hunk regular. elts of HnK. Thm => HOK fin. gen.

We can now convert $\mathcal{M}_{\varepsilon}$ into a deterministic automaton, \mathcal{D} . The states of \mathcal{D} consist of all the subsets of $V(\mathcal{M}_{\varepsilon})$. The single start state of \mathcal{D} is the subset of $V(\mathcal{M}_{\varepsilon})$ consisting of all the start states of $\mathcal{M}_{\varepsilon}$. The accept states of \mathcal{D} are the subsets of $V(\mathcal{M}_{\varepsilon})$ that contain at least one accept state of $\mathcal{M}_{\varepsilon}$. In \mathcal{D} there is an edge from U to U' labelled by x if, for each $v \in U$, there is an edge labelled x from v to some $v' \in U'$, and U'is entirely composed of such vertices. That is, there is an edge labelled x from U to the vertex corresponding to the set

 $U' = \{v' \in V(\mathcal{M}_{\varepsilon}) \mid v' \text{ is at the end of an edge} \$ labelled x that begins at some $v \in U\}.$