CHAPTER 1 - AFFINE VARIETIES

1.1 Algebraic sets and the Zariski topology Affine n -space $A^n = \{(a_1,...,a_n) : a_i \in k\}$ $K[x_1,...,x_n]=\{polynomials in the X_i\}$ $= \left\{ \sum \alpha_{\mathcal{I}} x^{\mathcal{I}} : a_{\mathcal{I}} \in k \right\}$ $\sum_{i=1}^{n} \mathcal{I} = (i_{1,...,1}i_{n}) \quad i_{j} > 0 \quad \forall j$

For
$$
S \subseteq k[x_1,...,x_n]
$$
:
\n
$$
Z(S) = \{P \in A^n : f(P) = 0 \forall f \in S\}
$$
\n
$$
x_{\text{zero set}} \text{ set}
$$
\n
$$
A_{\text{true}} \text{ such } Z(S) \text{ is an algebraic set } \text{ set } \text{ and } A \text{ is a } A \text{ if } S \text{ is a } A \text{ if } S \text{ is a } A \text{ is a } B \text{ if } S \text{ is a } B \text{ is a } B \text{ if } S \text{ is a } B \text{ is a } B \text{ if } S \text{ is a } B \text{ is a } B \text{ if } S \text{ is a } B \text{ is a } B \text{ is a } B \text{ if } S \text{ is a } B \text
$$

Any such Z(S) is an algebraic set. or attine alg. Variety First Examples

\n
$$
\begin{array}{l}\n 0 & A' = \mathbb{Z}(0) \\
 0 & \phi = \mathbb{Z}(1) \\
 0 & (a_{1}, \ldots, a_{n}) = \mathbb{Z}(x_{1} - a_{1}, \ldots, x_{n} - a_{n}) \\
 0 & \text{Linear subspaces}\n \end{array}
$$
\n

More Examples

6 Nodal cubic

Fermat curve 2 xn yn ²ⁿ K ^E easy ^K ^s hard Algebraicgroups e.g Stalk Z det ^t Degree ^d hypersurfaces in AI El f deg f D Nonexamples Fast Every affinevariety is closed in Euclidean topology ^Z ¹²14 is not an affinevariety Fast The interiorofany proper algebraic set is empty PI A holomorphic Fn is determined byits restriction to any openset ^z ⁱ IzI ^s 13 is not an affinevariety Fast Any subvariety ofAl is finite PI Fund thin alg

7L is not an affine variety

HILBERT BASIS THM

Thm. Every alg. set is defined by finitely many polynomials

Recall for R a ring, an ideal
$$
TER
$$
 is a
subop with "absorption"
eg. {f $f \in K[x]$: const. term = 0 } \subseteq $k[x]$

The ideal generated by
$$
S \subseteq R
$$
 is
\n $(S) = \{s, r, \dots + s_m r_m : s, i \in S, r_i \in R\}$
\nor smallest ideal containing S.

 $Exercise. 72(5) = Z((S)).$

Lemma/Defn. Raring TFAE Every ideal in R is finitely generated R satisfies the ascending chain condition every infinite ascending chain of ideals $\begin{aligned} \mathcal{T}_1 \subseteq \mathcal{T}_2 \subseteq \cdots \quad \text{is} \quad \text{eventually} \quad \text{Stationary}. \end{aligned}$ Say R is Noetherian

Fact. Fields are Noethenian (only ideals are 0 & k)

$$
\begin{array}{ll}\n\text{PF.} & \text{if } \mathbb{D} \implies \mathbb{Q} \\
& \sim \text{I} = \bigcup \text{I} \\
\text{where } \text{I} & \text{is an ideal.} \\
& \Rightarrow \text{Some I} & \text{is an ideal.} \\
\text{where } \text{I} & \text{is an ideal.}
$$

 $Prep. R$ Noetherian $\Rightarrow R[x_1,...,x_n]$ Noetherian.

If first for REx1. Genoral case follows by induction:

\n
$$
\begin{aligned}\n\text{SET: } \text{First: } \text{For } REx1. \text{ Genural case follows by induction.} \\
\text{Let } f_{0} = non-O \text{ et } f_{1} \text{ in } \text{gen.} \\
\text{Let } f_{0} = non-O \text{ et } f_{1} \text{ in } \text{form. deg.} \\
\text{Note: } \text{deg } f_{i} \leq \text{deg } f_{i+1} \text{ in } \text{Equation 1:} \\
\text{Note: } \text{deg } f_{i} \leq \text{deg } f_{i+1} \text{ in } \text{Equation 2:} \\
\text{Note: } (\text{a}_{0}, \ldots, \text{a}_{i}) \subseteq R \\
\text{Note: } \text{Recating } \text{coeff. of } f_{i} \text{ in } \\
\text{Note: } \text{Equation 2: } \text{Equation 3: } \text{Equation 4: } \\
\text{Note: } f_{0} = f_{0} \text{ in } \text{Equation 5: } \\
\text{Write: } f_{1} = f_{\text{m+1}} - \sum_{i=0}^{m} x^{\text{deg}} f_{\text{m+1}} - \text{deg} f_{i} \text{ in } \\
\text{Write: } f_{1} = f_{\text{m+1}} - \sum_{i=0}^{m} x^{\text{deg}} f_{\text{m+1}} - \text{deg} f_{i} \text{ in } \\
\text{Subset: } \text{Equation 6: } \\
\text{Subset: } \text{Equation 7: } \\
\text{Subset: } \text{Equation 8: } \\
\text{Subset: } \text{Equation 9: } \\
\text{Subset: } \text{Equation 1: } \\
\text{Subset: } \text{Equation 2: } \\
\text{Subset: } \text{Equation 3: } \\
\text{Subset: } \text{Equation 4: } \\
\text{Subset: } \text{Equation 5: } \\
\text{Subset: } \text{Equation 6: } \\
\text{Subset: } \text{Equation 7: } \\
\text{Subset: } \text{Equation 7: } \\
\text{Subset: } \text{Equation 8: } \\
\text{Subset: } \text{Equation 9: } \\
\text{Subset: } \text{Equ
$$

Pf. of Thm. Consider a Z(S). By Exercise can assume $S=\mathcal{I}$ =ideal. By Exercise suffices to show I f.g. Apply Prop. and Fact П

THE ZARISKI TOPOLOGY Goal: Define a topology on varieties. A topology on a space \times is a collection of subsets, called open sets. A closed set is the complement of an open set. With a topology, can define limits, continuous maps. The closed sets must satisfy: (i) ϕ , X closed (ii) Finite unions of closed sets are closed. (iii) Arbitrary intersections of closed sets are closed. Detro. The Zariski topology on \mathbb{A}^n is the one whose $closed$ sets are the $Z(S)$. Frop. This really is a topology. Pf (i) (ii) $\bigcup_{i=1}^{n} \mathcal{Z}(S_i) = \mathcal{Z}(\pi S_i)$ (iii) $\bigcap_{\Lambda} Z(S_{\alpha}) = Z(US_{\alpha})$

For $Y \subseteq X$ the subspace topology on Y has a closed set $C\cap Y$ for each closed $C\subseteq X$. So: points are close in Y iff close in X .

Zariski topology on any ZIS

- Fact. The closed sets in $Z(S)$ are the $Z(S')$ with $Z(s') \subseteq Z(s)$.
- The *L*ariski topology is messed up (i) all proper closed subsets of A^n have empty interior (ii) proper closed subsets of A' are the finite sets (iii) no two Zariski open sets are disjoint.

i) \Rightarrow every *tan*iski open set is clense in Lud. top. Also: every Zaniski open set is dense in Zar. top. $(i\omega) \implies \text{all bijections } \mathbb{A}' \rightarrow \mathbb{A}'$ are continuous. so we don't want to definemorphisms tobe all continuous maps $(i) \Rightarrow (n)$ converges to every pt in A' . $(iii) \implies Z$ ariski top. is not Hausdortt.

Smith Says this $Fact. Compact \nrightarrow Closed \n Example'$ Example The proper Z closed subsets of $Z(\gamma - \chi^2)$ are the finite sets or any irred plane curve Why? Consider $Z(f(x,y)) \cap Z(y-x^2)$ $= Z(f(x,y), y-x^2)$ \iff $\mathsf{Z}(\mathfrak{f}(\mathfrak{x}, \mathfrak{x}^2)) \subseteq \mathbb{A}^1$

The closure of $A \subseteq X$ is the smallest closed set in X containing A . Write A

Fact. The Zariski closure of
$$
Y \subseteq \mathbb{A}^n
$$

is $Z(\{F: f(Y) = 0\})$ easy

Example $Y \subseteq \mathbb{A}$ infinite $\Rightarrow \overline{Y} = \mathbb{A}$.

Fast Zariski closure Euclidean closure exercise for Zariski opensets

Example.
$$
X = Z(xy) \subseteq C^2
$$

 $U = C^2 \setminus Z(x)$
 $X \cap U = Zariski open in X.$

A set in X is dense if all open sets intersect it.
Equivalently, the closure of the set is X.
Example. {
$$
Q
$$
-points} is dense in Aⁿ
Z dense in A^k
Exercise. Are Z-pts dense in Aⁿ?
Fact. Say F \in K[x₁,...,x_n], $f|_A \equiv 0$ where A is
Zariski dense in Aⁿ. Then f $\equiv 0$.
This is in some sense the point of the Z-topology.
PI: Z(f) is a closed set containing A
 \Rightarrow Z(f) = Aⁿ.

See also Milne Prop 2.26 Every ascending chain ofopen subsetsof V is eventually constant every descending chain of closed subsets is eventually constant Closed compact

HILBERT'S NULLSTULLENSATZ

$$
\begin{array}{ccc}\n\text{Already have}: & \{ ideals in k[x_1,...,x_n]\} & \longrightarrow \text{affine alg. var.'s} \\
\text{T} & \longrightarrow & \mathbb{Z}(\pm)\n\end{array}
$$

Also have : affine alg var's
$$
\longrightarrow
$$
 2 ideals in k[x_{1,...,x_n}]
\n $V \longrightarrow T(V) = \{f: \{V=0\}$

- To what extent are these inverses? The first map is not injective: $Z(x_i) = Z(x_i^2)$ This is essentially the only problem
- Weak Nullstullensatz. Let k be alg. closed. Every maximal ideal in $k[x_1,...,x_n]$ is of the form (x_1-a_1,\ldots,x_n-a_n) .

Strong Nullstullensatz Let k be alg. closed,

\n
$$
\underline{T} \subseteq k[x_{1},...,x_{n}] \text{ an ideal. Then}
$$
\n
$$
\underline{T}(\overline{z}(\underline{\tau})) = \sqrt{\underline{T}}
$$
\n
$$
\downarrow \{\vdots, \text{ has a power in } \underline{\tau}\}
$$

Hilbert 1900

The WN implies other natural statements:

- · Every proper ideal in K[x1,...,Xn] has a common zero.
- . Conversely: a family of polynomials with no common zeros generates the unit ideal

The SN is a multi-dim version of fund. thm. alg.
First note: CEZ is a P.D. (follows from our of of
Wilbert basis thm)

$$
\cdot
$$
 (f) \in CEZ1 radical \Leftrightarrow F has no repeated roots.
To see the latter, note (f) = {f · p}
 \cdot FTA has equivalent formulas:
(i) each \cdot Fe(EZ) of deg > 1 has a root.
(ii) each \cdot Fe(EZ) of deg > 1 factors into linear
First observe: \pm (Z(f)) = V(f) \Rightarrow F has a root.
Indeed $Z(f) = \phi \Rightarrow \pm (Z(f)) = CEZ + V(f)$ (to see the \neq ,
note 1^k \neq (f) \forall k.
Now observe: F factors into linears \Rightarrow \pm (Z(f)) = V(f)
Clear for F with no repeated roots. If f is, say,
 $f(z) = (x-1)(x-3)^2$ then
 \pm (Z(f)) = \pm (1,33) = ((z-1)(z-3)) = V(f).

Note FTA is not ^a consequence of 5N since SN assumes K is alg. Closed

Sh gives an order-reversing bijection:

\n
$$
\left\{\n\begin{array}{l}\n\text{Affine alg.} \\
\text{Vars in } \mathbb{A}^n\end{array}\n\right\} \longrightarrow \left\{\n\begin{array}{l}\n\text{radical ideals} \\
\text{in } k[x_1,...,x_n]\n\end{array}\n\right\}.
$$
\nSome of the inclusions are easy:

\n(i) $\mathbb{X} \subseteq \mathbb{Z}(\mathbb{I}(\mathbb{X}))$ is obvious

\n(ii) $\mathbb{E} \subseteq \mathbb{T}(\mathbb{Z}(\mathbb{I}))$ is obvious

\n(iii) To see $\mathbb{Z}(\mathbb{I}(\mathbb{X})) \subseteq \mathbb{X}$ note $\mathbb{X} \in \mathbb{Z}(\mathbb{I})$ some $\mathbb{T} \longrightarrow \mathbb{Z}(\mathbb{I}(\mathbb{X})) = \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I}))$

\n(ii) $\Rightarrow \mathbb{I} \subseteq \mathbb{F} \subseteq \mathbb{I}(\mathbb{Z}(\mathbb{I}))$

\n
$$
\Rightarrow \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I})) \implies \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I})) \implies \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I}))) \implies \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I}))) \implies \mathbb{Z}(\mathbb{I}(\mathbb{Z}(\mathbb{I}))) \subseteq \mathbb{Z}(\mathbb{I}) = \mathbb{X}
$$
\n(iv) is SN .

Despite the names, we have $WN \Leftrightarrow SN$. More to the point, we can derive either one from the other.

Both results fail for k not alg. closed.
\ne.g.
$$
(x^{2}+1)
$$
 is radical in $\mathbb{R}[x]$ since $\mathbb{R}[x]/(x^{2}+1) \cong \mathbb{C}$
\nand C has no O-divisors.
\nBut $\mathbb{I}(\mathbb{Z}(x^{2}+1)) = \mathbb{I}(\phi) = \mathbb{R}[x]$

$$
SN \implies \text{if } g \in \mathcal{I}(Z(\mathcal{I}))
$$
 then $g^N \in \mathcal{I}$. What is N ?
Kollár 1988: if $\mathcal{I} = (f_{1,...,}f_{r})$, f_{i} homogeneous, deg $f_{i}>2$
then $N \leq \pi$ deg f_{i} . If r < n, this is sharp.

ZARISKI'S PROOF, FOLLOWING ALLCOCK

Thm.
$$
k = \text{field}, K = \text{extension}
$$

\nIf K is $\lim_{n \to \infty} \text{ as a } k$ -algebra then

\n K is algebraic over k .

For A a k-alg, we say X
$$
\subseteq
$$
A is a gen. set if each elt of A is a polynomial in X with coefficients in k.

We say K is algebraic over k if each elt of K is ^a root of ^a polynomial with coeffs in K ^e ^g ^G is algebraic over IR IR is not algebraic over Q

\n
$$
\begin{array}{ll}\n \text{Pif } d \text{ WN.} & Say m = max ideal in R = k[x_1, \ldots, x_n] \\
 \Rightarrow R/m \text{ a field, } \text{fin.} \text{ gan as a k-alg (since R is)} \\
 \text{Have } k n m = \{o\} \text{ (else } m = R) \\
 \Rightarrow \text{image } k \text{ of } k \text{ is isomorphic to } k.\n \end{array}
$$
\n

\n\n $\begin{array}{ll}\n \text{Time} & k \text{ of } k \\
 \text{K alg closed } \Rightarrow R/m = k \\
 \text{Under } R \rightarrow R/m, \text{ each } x_i \mapsto \overline{a_i} \in k.\n \end{array}$ \n

\n\n $\Rightarrow m \geq (x_1 - a_1, \ldots, x_n - a_n) \leftarrow \text{call this } m' \\
 \text{But } m' \text{ is maximal} \Rightarrow m' = m \quad \Box$ \n

* Food that m' is maximal: The maps

\n
$$
R'_{m'} \longrightarrow k \qquad k \longrightarrow R'_{m'}
$$
\nFor example, $R'_{m'}$ and $R'_{m'}$

\nare (well-defined) inverse ring R and R

\nFor a field \Rightarrow m' maximal. \Box

\nWikipedia: It was part of the Rabinowitz, due to Geroog. R

\nWikipedia: It was part of the Rahnéch, R

\nFor a common zero of the R : is a zero of R .

\nFor a common zero of the R : is a zero of R .

\nThus, F_1, \ldots, F_m , $X_{n+1} - 1$, have no common zeros in R^{n+1} .

\nWhen \Rightarrow can write $1 = p_1 P_1 + \cdots + p_m P_m + p_{mn} (X_{n+1} - 1)$, where $p_i \in k[X_1, \ldots, X_m]$.

\nApply the map $k[X_1, \ldots, X_m]$ and $\neg A = \frac{1}{2}$.

\nClearly, $X_{n+1} \longrightarrow \frac{1}{2}$.

\nLet \Rightarrow $P_1(X_1, \ldots, X_m) = \frac{1}{2} \int_{R} \neg A = \frac{1}{2} \left[\frac{1}{2} \left(\sum_{i=1}^{m} X_{i+1} \right) \cdot \frac{1}{2} \cdot \frac{1$

\n
$$
\begin{array}{ll}\n \text{PF of Thm (special case)}. & \text{Say } k \text{ infinite, } k \text{ is the simple transcendertial extension } k = k(x). \\
 \text{Let } f_1, \ldots, f_m \in K, \ A = k \text{-alg gen by } f_i: \\
 \text{WTS } A \subsetneq k. \\
 \text{Choose } c \in k \text{ away from the poles of the } f_i. \\
 \text{No } \text{elt of } A \text{ has a pole at } c. \\
 \Rightarrow \quad \forall x \text{-c} \notin A\n \end{array}
$$
\n

Pf of Thm. Assume K transcendental (not algebraic) over k.

Assume first K has transc. deg. 1, that is K contains
a field (isomorphic to)
$$
k(x)
$$
 8 K is alg over $k(x)$.
Let 1 = fo, f₁,...,f_m ∈ K, A = k alg. gen by the fi. What A \neq K.
Finite generation of K as a k-alg \Rightarrow K is a fin. dim
vector space over $k(x)$.
let e₁,...,e_n be a basis.
Write the mult. table for K:
 $e_{i}e_{j} = \sum_{l} \frac{a_{ijl}}{b_{ijl}} e_{l}$ a's, b's ∈ k[x]
Also write: $f_{i} = \sum_{j} \frac{c_{ij}}{d_{ij}} e_{j}$ c's, d's ∈ k[x]
Any a ∈ A is a k-linear como of products of fi.

Expand using the above formulas for f_i & $e_i e_j$ \rightarrow a is a K-linear combo of the e_i where each denominator is a product of $b's$ & $d's$. \rightarrow irreducible factors among the denominators are among the irred. Factors of the b 's & d 's. Choose some irred. Poly ρ not among those tactors.** Then $\frac{1}{p}$ is not in A.

Now assume the transcendence deg is > 1 . Choose a subextension k' s.t. trans deg of K over k' is 1. Previous case: K is not fin. gen. as a k -alg. \Rightarrow K is not fin. gen as a k-alg.

Finer points: * \exists a_{1,...}, an s.t. each elt of K is a poly in the a_i with coeffs in K. It the deg of a_i over K is di then only a_i ,..., a_i need in the polynomials $**$ For k infinite, can use the ∞ -many linears: x -c. Otherwise, mimic the proof of infinitude of primes. *** A construction of k' : choose k-alg gens $a_1, ..., a_n$ for K, let k' = $k(x_1,...,x_{\ell-1})$ where x_{ℓ} is last x_i that is transcendental over the previous.

IRREDUCIBILITY

- \overrightarrow{f} Basic example : $Z(x,x_2) \subseteq A^2$ = $Z(x_1) \cup Z(x_2)$ but $Z(x_i)$ cannot be further decomposed. Deta. A top space is <u>reducible</u> it it is the union of nonempty proper closed subsets
- Detn. A top space is disconnected it it is the union of nonempty disjoint closed subsets
	- Note: disconnected \Rightarrow reducible, or $irreducible \Rightarrow connected.$

Disconnected means what you think it does. Reducibility makes little sense for most spaces.

Fact. Hausdorff => reducible

The maximal irreducible closed subsets of a space are the <u>irreducible</u> components. Will prove below that any $Z(\pm)$ decomposes into finitely many.

Examples. (i)
$$
Z(x_1x_2) \subseteq A^2
$$
 is reducible, connected.
\n(2) $Z(x_1x_2, x_1x_3) \subseteq A^3$ is red, conn.
\n $= Z(x_1) \cup Z(x_2, x_3)$

(6)
$$
Z(x_i^2-1)
$$
 is disconnected:

\n $= Z(x-1) \cup Z(x+1)$ \n(4) A finite set in A is connected iff it has fewer than 2, etc.

\n(6) $p \in A^n$ is irreducible.

\n(7) $\cup P = \{x_i\}$

\n(8) $p \in A^n$ is irreducible.

\n(9) What about Aⁿ itself?

Prop. $X = Z(I) \subseteq A^n$ is irreducible iff $I(X)$ is prime.

$$
\begin{array}{lll}\n\mathbb{P}f. & \bigoplus & S_{\alpha\gamma} \mathbb{I}(x) \text{ prime } & \text{suppose } X = X_1 \cup X_2 \\
& \text{Then } \mathbb{I}(x) = \mathbb{I}(X_1) \cap \mathbb{I}(X_2). & \text{if } P = \mathbb{I} \cap \mathbb{I} \text{ then } \\
& \mathbb{I}(x) \text{ prime } \implies \mathbb{I}(x) = \mathbb{I}(X_1) \\
& \text{Time} \implies \text{radical and so } S_N \implies X = X_1 \\
& \text{Now } X \text{ irreducible } & \text{for } \mathbb{I}(X). \\
& \text{Then } X \subseteq \mathbb{Z}(f_g) = \mathbb{Z}(f) \cap \mathbb{Z}(g) \\
& \implies X = (Z(f) \cap X) \cup (Z(g) \cap X) \\
& \implies X = \mathbb{Z}(f) \cap X \implies X \subseteq Z(f) \implies f \in \mathbb{I}(X) \ \Box\n\end{array}
$$

Summary	radical ideals	\leftrightarrow affine alg. vars
prime ideals	\leftrightarrow irreducible aff. alg. vars.	
maximal ideals	\leftrightarrow one-point sets	

This is a geometric version of:
maximal
$$
\Rightarrow
$$
 prime \Rightarrow radical

More examples	()	A^n is irreducible
Since	$\mathcal{I}(A^n) = (0)$ is prime.	
©	$f \in k[x_1,...,x_n]$ irreducible	
$\Rightarrow Z(f)$ irreducible		
Since	$k[x_1,...,x_n]$ is a UFD.	
©	$\mathsf{If} f = \pi f_i^{m_i}$ for irreducible	
$\Rightarrow Z(f_i)$ are irred. components of $Z(f)$		

Defn. A top Space is Noetherian it every descending chain of closed subsets is eventually stationary. Note. K[x1,..., xn] Noetherian \Rightarrow aff. alg. vars are Noeth.

Note. A Hausdorff space is Noetherian iff it is finite.

 $Proof.$ A Noetherian top space X can be written as a finite union of irred. $closed$ s Xubsets $X, U \cdots U X_r$ If $X_i \notin X_j$ \forall it j the X_i are unique. In this case they are called the irred. components.

14. Existence. Let X be a minimal countercample.
(this exists by the Noetherian condition).
Then X must be reducible : $X = X_1 \cup X_2$.
X minimal $\Rightarrow X_1, X_2$ can be decomposed into
irred. closed subsets. Contradiction.
Uniqueness. Similarly, strai'ghthorward.

 $Cor.$ Let $I \subseteq k[x_1,...,x_n]$ radical. Then I is a finite intersection of prime ideals $\rho_1 \cap \cdots \cap \rho_m$. If there are no inclusions $p_i \subseteq p_j$, the pi are uniquely determined (they are the minimal prime ideals containing I)

$$
\begin{array}{ll}\n\text{Pf. Write } Z(\mathbf{I}) = \bigcup X_i \leftarrow \text{irred.} & \text{Let } p_i = \mathbf{I}(X_i) \\
\text{Have } Z(\mathbf{I}) = \bigcup Z(p_i) = Z(\cap p_i) \\
\mathbf{I}, \cap p_i \text{ both radical, so } S_N \implies \mathbf{I} = \cap p_i \\
\text{Uniqueness follows from the Prop.}\n\end{array}
$$

Remark.
$$
X = Z(I) \subseteq A^n
$$
 is discount iff J ideals I, J s.t.
\n $INJ = I(X) \& I+J=k(x_1,...,x_n]$
\nIn this case:
\n $X = Z(InJ) = Z(I) \cup Z(J)$
\n $\phi = Z(I+J) = Z(I) \cap Z(J)$.