CHAPTER 1 - AFFINE VARIETIES

1.1 Algebraic sets and the Zariski topology Affine n-space $A_{1}^{n} = \{(a_{1},...,a_{n}) : a_{i} \in k\}$ $K[x_{1},...,x_{n}] = \{polynomials in the Xi\}$ $= \{ \sum_{I} a_{I} X^{I} : a_{I} \in k \}$ $I = (i_{1},...,i_{n}) \quad i_{J} \ge 0 \forall j$

For
$$S \subseteq k[x_{1},...,x_{n}]$$
:
 $Z(S) = \{P \in A^{n} : f(P) = 0 \forall f \in S\}$
"zero set"
Any such $Z(S)$ is an algebraic set or affine all

Any such Z(S) is an algebraic set. or attine alg. Variety First Examples

(1)
$$A' = Z(0)$$

(2) $\phi = Z(1)$
(3) $(a_{1,...,a_{n}}) = Z(x_{1}-a_{1,...,x_{n}}-a_{n})$
(4) Linear subspaces

More Examples

6 Nodal cubic

HILBERT BASIS THM

Thm, Every alg. set is defined by finitely many polynomials.

Recall for
$$R$$
 a ring, an ideal $I \subseteq R$ is a
subgp with "absorption"
e.g. { $f \in k[x]$: const.term = 0} $\subseteq k[x]$

Exercise. Z(S) = Z((S)).

Lemma/Defn. Raring. TFAE
① Every ideal in R is finitely generated
② R satisfies the ascending chain condition: every infinite ascending chain of ideals I₁ ⊆ I₂ ⊆ ... is eventually stationary.
Say R is Noetherian.

Fact. Fields are Noethenian (only ideals are 0 & k)

Prop. R Noetherian -> R[X1,...,Xn] Noetherian.

PF. First for R[x]. General case follows by induction.
Say
$$I \subseteq R[x]$$
 not fin. gen.
Let $f_o = non-0$ elt of I of min. deg.
 $f_{i+1} = non-0$ elt of $I \setminus (f_{i}, ..., f_{i})$
Note: deg $f_i \leq deg f_{i+1}$ Ji
 $a_i = leading coeff. of f_i.$
 $I_i = (a_{0,...,a_i}) \subseteq R$
Noetherian $\Rightarrow I_o \subseteq I_1 \subseteq \cdots$ event. stationary
 $\Rightarrow \exists m st. a_{m+1} \in (a_{0}, ..., a_m)$
 $\Rightarrow a_{m+1} = \sum r(a_i \quad r_i \in R$
Write $f = f_{m+1} - \sum_{i=0}^{m} x^{deg f_{m+1}} - deg f_i r_i f_i$
 $f \in J_m \Rightarrow f_{m+1} \in J_m$ (by above equality
contradiction.

Pf. of Thm. Consider a Z(S). By Exercise can assume S=I=ideal. By Exercise suffices to show I F.g. Apply Prop. and Fact. \square

THE ZARISKI TOPOLOGY God: Define a topology on varieties. A topology on a space X is a collection of subsets, called open sets. A closed set is the complement of an open set. With a topology, can define limits, continuous maps. The closed sets must satisfy: $(i) \emptyset, X$ closed (ii) Finite unions of closed sets are closed. (iii) Arbitrary intersections of closed sets are closed. Defn. The Zariski topology on A is the one whose closed sets are the Z(S). trop. This really is a topology. Pf. (i') ✓ (ii) $\bigcup_{i=1}^{n} Z(S_i) = Z(T_i S_i)$ (iii) $\bigcap_{\Lambda} Z(S_{\alpha}) = Z(US_{\alpha})$

For $Y \subseteq X$ the subspace topology on Y has a closed set CNY for each closed $C \subseteq X$. So: points are close in Y iff close in X.

~> Zariski topology on any Z(S).

- Fact. The closed sets in Z(S) are the Z(S') with $Z(S') \subseteq Z(S)$.
- The Zariski topology is messed up: (i) all proper closed subsets of Aⁿ have empty interior (ii) proper closed subsets of A^l are the finite sets (iii) no two Zariski open sets are disjoint.

(i) ⇒ eveny Zaniski open set is dense in Eucl. top.
Also: eveny Zaniski open set is dense in Zar. top.
(ii) ⇒ all bijections A' → A' are continuous.
(so we don't won't to define morphisms to be all continuous maps!)
(ii) ⇒ (n) converges to every pt in A'.
(iii) ⇒ Zariski top. is not Hausdorff.

Fact. compact \neq closed Smith Says this. Example The proper Z-closed subsets of $Z(Y-X^2) \leq 7$ are the finite sets or any irred. plane curve Why? Consider $Z(f(x,y)) \cap Z(Y-X^2)$ $= Z(f(x,y), Y-X^2)$ $\iff Z(f(x,x^2)) \leq |A|^1$.

The closure of $A \subseteq X$ is the smallest closed set in X containing A. Write \overline{A}

Fact. The Zariski closure of
$$Y \subseteq A^n$$

is $Z(\{f: f(Y)=0\})$ easy

Example. $Y \subseteq A'$ infinite $\implies \overline{Y} = A'$.

Example.
$$X = Z(xy) \subseteq \mathbb{C}^2$$

 $U = \mathbb{C}^2 \setminus Z(x)$
 $X \cap U = Zariski open in X.$

A set in X is dense if all open sets intersect it.
Equivalently, the closure of the set is X.
Example.
$$\{Q, points\}$$
 is dense in A^n
Z dense in A^l
Exercise. Are Z-pts dense in A^n ?
Fact. Say $f \in k[x_1,...,x_n]$, $f|_A = 0$ where A is
Zariski dense in A^n . Then $f = 0$.
This is in some sense the point of the Z-topology.
Pf. $Z(f)$ is a closed set containing A
 $\Rightarrow Z(f) = A^n$.

HILBERT'S NULLSTULLENSATZ

Already have: {ideals in
$$k[x_1, ..., x_n]$$
 \longrightarrow affine alg. var.'s
 $I \longmapsto Z(I)$

Also have: affine alg var.'s
$$\longrightarrow$$
 {ideals in $k[x_1, ..., x_n]$ }
 $V \longrightarrow I(V) = \{f: f|V=0\}$

- To what extent are these inverses? The first map is not injective: $Z(x_1) = Z(x_1^2)$. This is essentially the only problem.
- Weak Nullstullensatz. Let k be alg. closed. Every maximal ideal in k[x1,..., xn] is of the form (x,-a,,..., xn-an).

Strong Nullstullensatz. Let k be alg. closed,

$$I \subseteq k[x_1,...,x_n]$$
 an ideal. Then
 $I(Z(I)) = VI$
 $f: f$ has a power in I_f

Hilbert 1900

The WN implies other natural statements:

- · Every proper ideal in k[x1,...,xn] has a common zero.
- · Conversely: a family of polynomials with no common zeros generates the unit ideal.

The SN is a mult-dim version of fund. thm. alg.
First note: C[Z] is a P.I.D. (follows from our pf of
Hilbert basis thm)

$$\cdot$$
 (f) \in C[Z] radical \Longrightarrow f has no repeated roots.
To see the latter, note (f) = {f · p}
 \cdot FTA has equivalent formulations:
(i) each $f \in C[Z]$ of deg > 1 has a root
(ii) each $f \in C[Z]$ of deg > 1 factors into linears
First observe: $I(Z(f)) = V(f) \implies f$ has a root.
Indeed $Z(f) = \phi \implies I(Z(f)) = C[Z] \neq V(f)$ (to see the \neq ,
note $1^{k} \notin (f) \forall k$.
Now observe: f factors into linears $\implies I(Z(f)) = V(f)$
 $C[ear for f with no repeated roots. If f is, say,
 $f(Z) = (X-I)(X-3)^{2}$ then
 $I(Z(f)) = I(f_{1,3}^{2}) = ((Z-I)(Z-3)) = V(f)$.$

Note FTA is not a consequence of SN since SN assumes k is alg. closed.

SN gives an order-reversing bijection:

$$\begin{cases}
\text{Afffine alg.} \\
\text{Vars in An}
\end{cases} \iff \begin{cases}
\text{radical ideals} \\
\text{in } k[x_1,...,x_n]
\end{cases}.$$
Some of the inclusions are easy:
(i) $X \subseteq Z(I(X))$ is obvious
(ii) $V \subseteq Z(I(X))$ is obvious
(iii) $V \subseteq Z(I(X))$ is obvious
(iii) To see $Z(I(X)) \subseteq X$ note $X = Z(I)$ some I
 $\longrightarrow Z(I(X)) = Z(I(Z(I)))$
(ii) $\Rightarrow I \subseteq V \subseteq Z(I(Z(I)))$
(ii) $\Rightarrow I \subseteq V \subseteq Z(I(Z(I)))$
(ii) $\Rightarrow I \subseteq V \subseteq Z(I(Z(I)))$

Both results fail for k not alg. closed,
e.g.
$$(x^{2}+1)$$
 is radical in $\mathbb{R}[x]$ since $\mathbb{R}[x]/(x^{2}+1) \cong \mathbb{C}$
and \mathbb{C} has no \mathbb{O} -divisors.
But $\mathbb{I}(\mathbb{Z}(x^{2}+1)) = \mathbb{I}(\phi) = \mathbb{R}[x]$

$$\begin{split} & \text{SN} \implies \text{if } g \in I(Z(I)) \text{ then } g^{\mathsf{N}} \in I. \text{ What is } \mathsf{N}? \\ & \text{Kollár } 1988: \text{ if } I = (f_{1}, \dots, f_{r}) \text{ } f_{i} \text{ homogeneous, } \deg f_{i} > 2 \\ & \text{ then } \mathsf{N} \leq \mathsf{T} \deg f_{i} \text{ } . \text{ } \mathsf{IF } \mathsf{r} < \mathsf{n}, \text{ this is sharp.} \end{split}$$

ZARISKI'S PROOF, FOLLOWING ALLCOCK

For A a k-alg, we say
$$X \subseteq A$$
 is a gen. set if
each ett of A is a polynomial in X with coeffs in k.

Pf of WN. Say
$$m = \max \text{ ideal in } R = k[x_1, ..., x_n]$$

 $\Rightarrow R/m \text{ a field}, \text{ fin. gen as a k-alg (since R is)}.$
Have $knm = fo$? (else $m = R$)
 $\Rightarrow \text{ image } \overline{k} \text{ of } k \text{ is isomorphic to } k.$
Thu $\Rightarrow R/m = \text{ alg. ext. of } \overline{k}$
 $k \text{ alg closed} \Rightarrow R/m = \overline{k}$ (image of a_i
 $Under R \rightarrow R/m$, each $x_i \mapsto \overline{a_i \in k}$.
 $\Rightarrow m = (x_1 - a_1, ..., x_n - a_n) \leftarrow \text{ call this } m'$
But m' is maximal $\Rightarrow m' = m$

* Proof that m' is maximal: The maps

$$P_{m'} \rightarrow k \qquad k \rightarrow P_{m'}$$

 $F \mapsto f(a_{1,...,a_{n}}) \qquad 1 \mapsto 1$
are (well-defined) inverse ring homs.
 $k = field \Rightarrow m' maximal.$

PF of SN. The "trick of Rabinowitz," due to
George Yuri Rainich (né Rabinowitsch) 1929
Wikipedia: It was port of the Rainich folklore
that he could lead anything published in Europe.

Restatement: Say $g \in I(Z(f_{1},...,f_{m}))$.
So a common zero of the fi is a zero of g .
Thus fi,..., fm, Xn+g-1 have no common
zeros in A^{n+1}
WN \Rightarrow can write
 $1 = p_1f_1 + \dots + p_mf_m + p_{m+1}(Xn+1g-1)$
where $p_i \in k(X_{1},...,Xn+1] \rightarrow k(X_{1},...,Xn)$
 $Xn+1 \mapsto Hg$
 $\rightarrow I = p_1(X_{1},...,Xn,\frac{1}{g})f_1 + \dots + p_m(X_{1,...,Xn},\frac{1}{g})f_m$
Clear denominators.

Pf of Thm (special case). Say k infinite, K is the
simple transcendental extension
$$K = k(x)$$
.
Let $f_{1,...,f_{m}} \in K$, $A = k$ -alg gen by f_{i} .
WTS $A \subsetneq K$.
Choose $c \in k$ away from the poles of the f_{i} .
No elt of A has a pole at c.
 $\implies V_{X-c} \notin A$

Pf of Thm. Assume K transcendental (not algebraic) over K.

Assume first K has transc. deg. 1, that is K contains
a field (isomorphic to) k(x) & K is alg. over k(x).
Let 1=fo, f1,...,fm & K, A = K-alg. gen by the fi'. Want A
$$\neq$$
 K.
Finite generation of K as a K-alg \Rightarrow K is a fin. dim
vector space over k(x)^{*}.
Let $e_{1,...,e_{n}}$ be a basis.
Write the mult. table for K:
 $e_{i}e_{j} = \sum_{l} \frac{a_{ijl}}{b_{ijl}} e_{l}$ a's, b's \in k[x]
Also write: $f_{i} = \sum_{j} \frac{c_{ij}}{d_{ij}} e_{j}$ c's, d's \in k[x]
Any a \in A is a K-linear combo of products of fi.

Expand using the above formulas for fi & eiej ~ a is a k-linear combo of the ei where each denominator is a product of b's & d's. ~ irreducible factors among the denominators are among the irred. factors of the b's & d's. Choose some irred. poly p not among those factors.** Then "p is not in A.

Now assume the transcendence deg is > 1. Choose a subextension k' s.t. trans. deg of K over k' is 1. Previous case: K is not fin. gen. as a k-alg. \Rightarrow K is not fin. gen as a k-alg.

Finer points:
* ∃ a₁,...,a_n s.t. each elt of K is a poly in the ai with coeffs in K. If the deg of ai over K is di then only a'i,...,a'i need in the polynomvals...
** For K infinite, can use the ∞-many linears: X-c. Othenwise, mimic the proof of infinitude of primes.
*** A construction of K': choose K-alg gens a₁,...,a_n for K, let K'= k(X1,...,Xe-1) where Xe is last Xi that is transcendental over the previous.

REDUCIBILITY

- [κ X \rightarrow Basic example : $Z(X,X_2) \subseteq \mathbb{A}^2$ $= Z(x_1) \cup Z(x_2)$ but Z(Xi) cannot be further decomposed. Defn. A top. space is <u>reducible</u> if it is the union of nonempty, proper closed subsets. Defn. A top. space is <u>disconnected</u> if it is the union of nonempty, disjoint closed subsets

 - Note: disconnected \Rightarrow reducible, or irreducible \Rightarrow connected.

Disconnected means what you think it does. Reducibility makes little sense for most spaces.

Fact. Hausdorff \implies reducible

The maximal irreducible closed subsets of a space are the irreducible components. Will prove below that any Z(I) decomposes into finitely many.

Examples. (1)
$$Z(x_1x_2) \subseteq |A^2$$
 is reducible, connected.
(2) $Z(x_1x_2, x_1x_3) \subseteq |A^3$ is red, conn.
 $= Z(x_1) \cup Z(x_2, x_3)$

Prop. $X = Z(I) \subseteq A^{n}$ is irreducible iff I(X) is prime.

Summary radical ideals
$$\leftrightarrow$$
 affine alg. vars
prime ideals \leftrightarrow irreducible aff. alg. vars.
maximal ideals \leftrightarrow one-point sets

This is a geometric version of:
maximal
$$\Rightarrow$$
 prime \Rightarrow radical

More examples () (Aⁿ is irreducible
since
$$I(A^n) = (0)$$
 is prime.
(2) $f \in k[x_1,...,x_n]$ irreducible
 $\implies Z(f)$ irreducible
since $k[x_1,...,x_n]$ is a UFD.
(3) If $f = \pi f_i^{m_i}$ fi irreducible
 $\implies Z(f_i)$ are irred. components of $Z(f)$

Defn. A top. Space is Noetherian if every descending chain of closed subsets is eventually stationary.

Note. $k[x_1, ..., x_n]$ Noetherian \Rightarrow aff. alg. vars are Noeth.

Note. A Hausdorff space is Noetherian iff it is finite.

Prop. A Noethenian top. space X can be written as a finite union of irred. closed subsets X, U... VXr. If Xi ≠ Xj V i≠j the Xi are unique. In this case they are called the irred. components.

Cor. Let
$$I \subseteq k(x_1, ..., x_n)$$
 radical. Then I is a finite
intersection of prime ideals $p_1 \cap \cdots \cap p_m$.
If there are no inclusions $p_i \subseteq p_j$, the p_i
are uniquely determined (they are the minimal
prime ideals containing I).

Pf. Write
$$Z(I) = \bigcup X_i \leftarrow inred$$
. Let $p_i = I(X_i)$
Have $Z(I) = \bigcup Z(p_i) = Z(\bigcap p_i)$
 $I, \bigcap p_i$ both radical, so $S_N \Longrightarrow I = \bigcap p_i$.
Uniqueness follows from the Prop.

Remark.
$$X = Z(I) \subseteq A^n$$
 is disconn iff \exists ideals I, J st.
 $InJ = I(X) \& I+J = k(x_1, ..., x_n]$
In this case:
 $X = Z(InJ) = Z(I) \cup Z(J)$
 $\phi = Z(I+J) = Z(I) \cap Z(J).$