
MATH 465/565: Grassmannian Notes
The Grassmannian G(r, n) is the set of r-dimensional subspaces of the k-vector space kn; it has

a natural bijection with the set G(r − 1, n − 1) of (r − 1)-dimensional linear subspaces Pr−1 ⊆ Pn. We
write G(k, V ) for the set of k-dimensional subspaces of an n-dimensional k-vector space V .

We’d like to be able to think of G(r, V ) as a quasiprojective variety; to do so, we consider the
Plücker embedding :

γ ∶ G(r, V ) → P(
r

⋀V )
Span(v1, . . . , vr) ↦ [v1 ∧⋯ ∧ vr]

If (wi = ∑j aijvj)1≤i≤r is another ordered basis for Λ = Span(v1, . . . , vr), where A = (aij) is an invertible

matrix, then w1∧⋯∧wr = (detA)(v1∧⋯∧vr). Thus the Plücker embedding is a well-defined function
from G(k, V ) to P(⋀r V ). We would like to show, in analogy with what we were able to show for
the Segre embedding σ∶ P(V ) × P(W ) → P(V ⊗W ), that

• the Plücker embedding γ is injective,

• the image γ(G(r, V )) is closed, and

• the Grassmannian G(r, V ) “locally” can be given a structure as an affine variety, and γ restricts
to an isomorphism between these “local” pieces of G(r, V ) and Zariski open subsets of the
image.

Given x ∈ ⋀r V , we say that x is totally decomposable if x = v1 ∧⋯∧ vr for some v1, . . . , vr ∈ V , or
equivalently, if [x] is in the image of the Plücker embedding.

Example. Every non-zero element of ⋀1 V is trivially totally decomposable.

Example. If dimV = 3, then every non-zero element of ⋀2 V is totally decomposable.

Proof. Given a sum v1 ∧v2 +v3 ∧v4 of two non-zero elements of ⋀2 V , the two-dimensional subspaces
Span(v1, v2) and Span(v3, v4) must intersect. If w1 is in the intersection, then we can rewrite v1∧v2 =
w1 ∧w2 for some w1 ∈ Span(v1, v2). Similarly we can rewrite v3 ∧ v4 = w1 ∧w3 for some w3. Then

v1 ∧ v2 + v3 ∧ v4 = w1 ∧w2 +w1 ∧w3 = w1 ∧ (w2 +w3)

is totally decomposable. Proceeding in the same way by induction, we can show that any element of

⋀2 V is totally decomposable.

Example. On the other hand, if v1, v2, v3, v4 ∈ V are linearly independent, then v1 ∧ v2 + v3 ∧ v4 is
not totally decomposable. This follows (for chark /= 0) from the observation that since v ∧ v = 0, if
x ∈ ⋀r V is totally decomposable, then x ∧ x = 0. Since

(v1 ∧ v2 + v3 ∧ v4) ∧ (v1 ∧ v2 + v3 ∧ v4) = v1 ∧ v2 ∧ v3 ∧ v4 + v3 ∧ v4 ∧ v1 ∧ v2

= 2v1 ∧ v2 ∧ v3 ∧ v4,

which is non-zero since v1, v2, v3, v4 ∈ V are linearly independent (certainly v3∧v4∧v1∧v2 = ±v1∧v2∧
v3 ∧ v4, and the sign is positive because (13)(24) is an even permutation).
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If e1, . . . , en is a basis for V , then the set of eI = ei1 ∧ ei2 ∧ ⋯ ∧ eir is a basis for ⋀r V , where
I = {i1, . . . , ir}, with 1 ≤ i1 < i2 < ⋯ < ir ≤ n. Thus any element of x ∈ ⋀r V has a unique representation
in the form

x = ∑
I⊆{1,...,n}
∣I ∣=r

aIeI = ∑
1≤i1<⋯<ir≤n

ai1,i2,...,ir(ei1 ∧⋯ ∧ eir),

and we call the homogeneous coordinates aI the Plücker coordinates on P(
r

⋀V ) ≅ P(
n
r
)−1 associated

to the choice of ordered basis (e1, . . . , en) for V .

Example. If V has basis e1, e2, e3, e4, then every element x ∈ ⋀2 V can be uniquely written as

x = a12(e1 ∧ e2) + a13(e1 ∧ e3) + a14(e1 ∧ e4) + a23(e2 ∧ e3) + a24(e2 ∧ e4) + a34(e3 ∧ e4).

If x is totally decomposable, then we know x∧x = 0; we compute in terms of the Plücker coordinates
that

x ∧ x = (a12a34 − a13a24 + a14a23)(e1 ∧ e2 ∧ e3 ∧ e4),
Hence the image of the Plücker embedding of G(2,4) into P5 satisfies the homogeneous quadric
equation a12a34 − a13a24 + a14a23 = 0. (In fact, in this particular case the image is precisely the zero
locus of this polynomial.)

To show that the Plücker embedding is an injection, we must describe how to recover Span(v1, . . . , vr)
from x = v1 ∧ ⋯ ∧ vr. We observe first that vi ∧ x = 0 for 1 ≤ i ≤ r, and more generally, if
v ∈ Span(v1, . . . , vr), then v ∧ x is zero. In fact, this property determines Span(v1, . . . , vr):

Proposition. Given a non-zero x ∈ ⋀r V , let ϕx∶ V → ⋀r+1 V be the linear map

ϕx(v) = v ∧ x.

Then dim ker(ϕx) ≤ r, with equality if and only if x is totally decomposable. If x = v1 ∧⋯ ∧ vr, then
ker(ϕx) = Span(v1, . . . , vr).

Proof. Chose a basis e1, . . . , en for V so that e1, . . . , es is a basis for ker(ϕx), where s = dim ker(ϕx).
Let x = ∑

∣I ∣=r
aIeI . Then we have

ϕx(ei) = ei ∧ x = ∑
∣I ∣=r

aI(ei ∧ eI) = ∑
∣I ∣=r, I/∋i

±aIeI∪{i},

so if ei ∧x = 0, then aI = 0 whenever i /∈ I, or equivalently, every non-zero term of x involves ei. Since
this is true for every i with 1 ≤ i ≤ s, we have s ≤ r and we can write x = (e1 ∧ ⋯ ∧ es) ∧ y for some
y ∈ ⋀r−s V . In the case that r = s, we get that x = a1,...,re1 ∧⋯ ∧ er, and x is totally decomposable.

As for the second statement, in the case x = v1 ∧⋯∧ vr, we know that Span(v1, . . . , vr) ⊆ ker(ϕx),
and we have just shown that both spaces have the same dimension.

Corollary. The Plücker embedding is an injection and its image is closed in P(⋀k V )
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Proof. Given x = v1 ∧ ⋯ ∧ vr, we’ve shown Span(v1, . . . , vr) = ker(ϕx), so we can recover the r-
dimensional subspace Span(v1, . . . , vr) from x, and the Plücker embedding is injective.

To show that its image is closed, we note that since dim ker(ϕx) ≤ r, with equality if and only if
x is totally decomposable, Rank(ϕx) ≥ n − r, with equality if and only if x is totally decomposable.
If Mx is a matrix for ϕx in a given basis e1, . . . en for V and the corresponding basis for ⋀r+1 V , with
x = ∑

∣I ∣=r
aIeI , then the entries of Mx are all 0 or ±aI .

The condition that ϕx have rank at most n−r is expressed by the vanishing of all the (n−r+1)×
(n − r + 1) minors of the matrix Mx. Since the entries of Mx are homogeneous linear in the Plücker
coordinates aI , we find that the image of the Plücker embedding is the set of common zeros of a
collection of homogeneous polynomials of degree n − r + 1 in the aI . Thus the image is closed.

Example. We return to the case of G(2,4), with

x = a12(e1 ∧ e2) + a13(e1 ∧ e3) + a14(e1 ∧ e4) + a23(e2 ∧ e3) + a24(e2 ∧ e4) + a34(e3 ∧ e4).

In the bases (e1, e2, e3, e4) for V and (e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4) for ⋀3 V , the
matrix of ϕx is

Mx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a23 −a13 a12 0
a24 −a14 0 a12

a34 0 −a14 a13

0 a34 −a24 a24

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, it’s easy to see directly that if any entry of this matrix is non-zero, the matrix must have
rank at least 2. The image of G(2,4) under the Plücker embedding is the common zero locus of the
sixteen 3 × 3 minors of this matrix, such as

RRRRRRRRRRRRRR

a23 −a13 a12

a24 −a14 0
a34 0 −a14

RRRRRRRRRRRRRR
= a23(−a14)(−a14) − a24(−a13)(−a14) − a34(−a14)a12 = a14(a14a23 − a13a24 + a12a34),

RRRRRRRRRRRRRR

a23 −a13 a12

a24 −a14 0
0 a34 −a24

RRRRRRRRRRRRRR
= a23(−a14)(−a24) + a12a24a34 − a24(−a13)(−a24) = a24(a14a23 + a12a34 − a13a24), and

RRRRRRRRRRRRRR

−a13 a12 0
−a14 0 a12

0 −a14 a13

RRRRRRRRRRRRRR
= −(−a13)(a12)(−a14) − a12(−a14)a13 = 0.

Indeed, four of the 3× 3 minors are zero, and the rest are all multiples of the degree two polynomial
a12a34 −a13a24 +a14a23 that we found earlier by ±aI . In general, while the equations we found for the
Plücker image have degree n − r + 1, in fact in characteristic 0 the homogeneous ideal of the Plücker
image is always generated by degree 2 polynomials.

Local coordinates on Grassmannians

Given an r ×n matrix B = (bij) of rank r, the row space of B maps under the Plücker embedding to

(b11e1 +⋯ + b1nen) ∧⋯ ∧ (br1e1 +⋯ + brnen) = ∑
∣J ∣=r

aJeJ ,
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where the aI are the usual Plücker coordinates. In this product, only the terms bijej with j ∈ J
contribute to the term aJeJ , and

(b1j1ej1 +⋯ + b1jrejr) ∧⋯ ∧ (brj1ej1 +⋯ + brjnejn) = (det(bijl)1≤i,l≤r)(ej1 ∧⋯ ∧ ejr),

i.e. the Plücker coordinate aJ is the r × r minor of the matrix B obtained by taking all r rows and
the r columns with indices in J .

We wish to describe the open subsets of G(r, n) where some aJ /= 0. For simplicity of notation,
we will consider the case where a1,...,r /= 0; every other case is equivalent to this one by permuting our
basis for V . The corresponding minor of B is just the determinant of the leftmost r × r submatrix,
and condition a1,...,r /= 0 means this submatrix is invertible. Multiplying on the left by the inverse of
this matrix, we can replace our matrix with a new matrix B of the form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 b1,r+1 b1,r+2 . . . b1,n

0 1 . . . 0 b2,r+1 b2,r+2 . . . b2,n

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 . . . 1 br,r+1 br,r+2 . . . br,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with the same row space. Equivalently, performing elementary row operations on B changes basis
for the row space (without changing the basis for V ), and using Gaussian elimination we can put
B in reduced row echelon form. The condition that the the leftmost r × r minor is non-zero implies
that the leading 1 in each row will be in this position.

Moreover, any two distinct matrices of this form will have different row spaces. Thus we can think
of these bij for 1 ≤ i ≤ r and r+1 ≤ j ≤ n as “local coordinates” on G(r, n), and the Plücker gives us a
bijection between Ar(n−r) (with coordinates bij) and the open subset a1,...,r /= 0 of the Plücker image.
The aJ are given by the r × r minors of this matrix, which are certainly polynomials in the entries,
so to show that the Plücker embedding is “locally an isomorphism” we must show that the inverse
is regular, i.e. we must compute the bij in terms aJ .

To do so, we must compute other minors of this r × n matrix B; for example,

a2,3,...,r,j =

RRRRRRRRRRRRRRRRRR

0 . . . 0 b1,j

1 . . . 0 b2,j

⋮ ⋱ ⋮ ⋮
0 . . . 1 br,j

RRRRRRRRRRRRRRRRRR

= (−1)r+1b1,j,

as we can see by Gaussian elimination or by expanding by minors across the first row. Similarly,
for this matrix B, we have a1,...,̂i,...,r,j = (−1)r+ibi,j, where î means that the i is omitted. Of course,
this was for matrices with the special form above, where in particular a1,...,r = 1; to express the bi,j
as regular functions in the aJ on the open subset a1,...,r /= 0 of the Plücker image, we homogenize,
yielding

bi,j = (−1)r+i
a1,...,̂i,...,r,j

a1,...,r

.

Thus the Plücker embedding is “locally an isomorphism.” Whenever we write G(r, n), we will think
of it as a quasiprojective variety by identifying it with its image under the Plücker embedding. On
the other hand, to show for example that a map from G(r, n) is regular or that a subset of G(r, n) is
closed, it suffices by what we’ve just shown to check these properties on each of the affine open sets
(isomorphic to Ar(n−r)) that we’ve described.
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Remark. We can describe our local coordinate charts without reference to a basis. Given a subspace
Γ ⊆ V of dimension n − r, we can consider the set

UΓ = {Λ ∈ G(r, V )∶ Λ ∩ Γ = (0).}

Then UΓ is an open subset of G(r, V ), and if we fix a Λ0 ∈ UΓ, then every element of UΓ has the form

Λα = {v + α(v)∶ v ∈ Λ0}

for a unique α ∈ Homk(Λ0,Γ). This gives a bijection UΓ ≅ Homk(Λ0,Γ).

The Plücker relations

We saw above that the Plücker coordinates of the row space of

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 b1,r+1 b1,r+2 . . . b1,n

0 1 . . . 0 b2,r+1 b2,r+2 . . . b2,n

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 . . . 1 br,r+1 br,r+2 . . . br,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

are given by bi,j = (−1)r+i a1,...,̂i,...,r,ja1,...,r
. Similarly, the r × r minor of this matrix including all but s of

the first r columns, with the omitted columns indexed by i1, . . . , is, and s of the remaining columns,
indexed by j1, . . . , js, will be (up to sign) equal to the s × s minor obtained by taking rows i1, . . . , is
and columns j1, . . . , js.

Taking a1,...,r = 1, we find then that determinant of this s × s submatrix is, up to sign, equal to
a1,...,î1,...,îs,...,r,j1,...,js

. On the other hand, we could compute this determinant by expanding by minors
along some row or column, giving an expression in terms of the bi,j = (−1)r+ia1,...,̂i,...,r,j multiplied by
(s − 1) × (s − 1) minors, which in turn are, up to sign, equal to Plücker coordinates aJ . Computing
this determinant in these two different ways, we can obtain a quadratic relation on the Plücker
coordinates. The quadratic relations we obtain in this way are the Plücker relations involving a1,...,r.

For example, for a1,...,r = 1, we have

a3,...,r,j,l =

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

0 0 . . . 0 b1,j b1,l

0 0 . . . 0 b2,j b2,l

1 0 . . . 0 b3,j b2,l

0 1 . . . 0 b4,j b2,l

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 . . . 1 br,j br,l

RRRRRRRRRRRRRRRRRRRRRRRRRRRR

= (−1)r ∣b1,j b1,l

b2,j b2,l
∣ ,

but expanding this 2 × 2 determinant by minors, we can also compute (again, taking a1,...,r = 1) that

∣b1,j b1,l

b2,j b2,l
∣ = b1,jb2,l − b1,lb2,j

= (−1)r+1a2,3,...,r,j(−1)r+2a1,3,...,r,l − (−1)r+1a2,3,...,r,l(−1)r+2a1,3,...,r,j

= a1,3,...,r,ja2,3,...,r,l − a1,3,...,r,la2,3,...,r,j,
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which yields (−1)ra3,...,r,j,l = a1,3,...,r,ja2,3,...,r,l − a1,3,...,r,la2,3,...,r,j. Homogenizing this relation, we get

(−1)ra1,2,...,ra3,...,r,j,l = a1,3,...,r,ja2,3,...,r,l − a1,3,...,r,la2,3,...,r,j.

Note that in the special case n = 4, r = 2, j = 3, and l = 4, we recover

a12a34 = a13a24 − a14a23,

which we saw previously is the single equation for the image of G(2,4) under the Plücker embedding.

Remark. See Shafarevich or Harris (handout on website) for an exposition of the Plücker relations that
does not rely on local coordinates. The approach is essentially the same in both books, although the
notation is different. Harris refers to a somewhat natural isomorphism ⋀r V ≅ ⋀n−r V ∗; to construct
this isomorphism, note first that there is a non-degenerate bilinear map

r

⋀V ×
n−r
⋀ V Ð→

n

⋀V,

defined by (x, y) ↦ x∧y. The vector space ⋀n V is one-dimensional, so if we choose an identification
k ≅ ⋀n V , this non-degenerate bilinear map induces an isomorphism ⋀r V ≅ (⋀n−r V )∗, natural only
up to multiplication by a scalar because of the choice of a basis for ⋀n V .

Now, there is a natural bilinear map

n−r
⋀ V ∗ ×

n−r
⋀ V Ð→ k,

defined by (u,x) ↦ u⌟x, called the convolution of u and x (see Shafarevich for the definition). This
induces a natural isomorphism (⋀n−r V )∗ ≅ ⋀n−r V ∗. Composing these two isomorphisms, we get an
isomorphism

r

⋀V ≅ (
n−r
⋀ V )

∗
≅
n−r
⋀ V ∗,

natural up to multiplication by a scalar (due to the choice of identification k ≅ ⋀n V ). For x ∈ ⋀r V ,
Harris uses x∗ to denote the corresponding element of ⋀n−r V ∗.
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